Mg-based compounds for hydrogen and energy storage

被引:1
作者
J.-C. Crivello
R. V. Denys
M. Dornheim
M. Felderhoff
D. M. Grant
J. Huot
T. R. Jensen
P. de Jongh
M. Latroche
G. S. Walker
C. J. Webb
V. A. Yartys
机构
[1] Université Paris Est,Hydrogen Research Institute
[2] ICMPE (UMR 7182),Department of Chemistry, Interdisciplinary Nanoscience Center
[3] CNRS,Debye Institute for Nanomaterials Science
[4] UPEC,Queensland Micro
[5] Institute for Energy Technology and Norwegian University of Science and Technology, and Nanotechnology Centre
[6] Helmholtz-Zentrum Geesthacht,undefined
[7] Zentrum für Material- und Küstenforschung GmbH,undefined
[8] Max-Planck-Institut für Kohlenforschung,undefined
[9] Nottingham University,undefined
[10] Université du Québec à Trois-Rivières,undefined
[11] Aarhus University,undefined
[12] Utrecht University,undefined
[13] Griffith University,undefined
来源
Applied Physics A | 2016年 / 122卷
关键词
Hydride; Dehydrogenation; Hydrogen Storage; Metal Hydride; MgH2;
D O I
暂无
中图分类号
学科分类号
摘要
Magnesium-based alloys attract significant interest as cost-efficient hydrogen storage materials allowing the combination of high gravimetric storage capacity of hydrogen with fast rates of hydrogen uptake and release and pronounced destabilization of the metal–hydrogen bonding in comparison with binary Mg–H systems. In this review, various groups of magnesium compounds are considered, including (1) RE–Mg–Ni hydrides (RE = La, Pr, Nd); (2) Mg alloys with p-elements (X = Si, Ge, Sn, and Al); and (3) magnesium alloys with d-elements (Ti, Fe, Co, Ni, Cu, Zn, Pd). The hydrogenation–disproportionation–desorption–recombination process in the Mg-based alloys (LaMg12, LaMg11Ni) and unusually high-pressure hydrides synthesized at pressures exceeding 100 MPa (MgNi2H3) and stabilized by Ni–H bonding are also discussed. The paper reviews interrelations between the properties of the Mg-based hydrides and p–T conditions of the metal–hydrogen interactions, chemical composition of the initial alloys, their crystal structures, and microstructural state.
引用
收藏
相关论文
共 349 条
[1]  
Ley MB(2014)Complex hydrides for hydrogen storage—new perspectives Mater. Today 17 122-128
[2]  
Jepsen LH(2009)Chemical and physical solutions for hydrogen storage Angew. Chem. Int. Ed. 48 6608-6630
[3]  
Lee Y-S(2007)Hydrogen storage in magnesium-based hydrides and hydride composites Scr. Mater. 56 841-846
[4]  
Cho YW(1999)Nanocrystalline magnesium for hydrogen storage J. Alloys Compd. 288 217-225
[5]  
Bellosta von Colbe JM(2001)Mechanically alloyed metal hydride systems Appl. Phys. A Mater. Sci. Process. 72 187-195
[6]  
Dornheim M(2015)Effect of C Int. J. Hydrog. Energy 40 10508-10515
[7]  
Rokni M(2011) Additive on Magnesium Hydride for Hydrogen Storage J. Mater. Res. 16 2893-2905
[8]  
Jensen JO(2015)Study of the activation process of Mg-based hydrogen storage materials modified by graphite and other carbonaceous compounds J. Phys. Chem. Solids 84 96-106
[9]  
Sloth M(2015)A review of catalyst-enhanced magnesium hydride as a hydrogen storage material Energy 88 469-477
[10]  
Filinchuk Y(2000)Metal hydride thermal heat storage prototype for concentrating solar thermal power Int. J. Hydrog. Energy 25 425-430