共 41 条
A Bayesian finite-element trained machine learning approach for predicting post-burn contraction
被引:0
|作者:
Ginger Egberts
Marianne Schaaphok
Fred Vermolen
Paul van Zuijlen
机构:
[1] Delft University of Technology,Delft Institute of Applied Mathematics
[2] University of Hasselt,Research Group Computational Mathematics(CMAT),Department of Mathematics and Statistics
[3] Red Cross Hospital,Burn Centre and Department of Plastic,Reconstructive & Hand Surgery
[4] Amsterdam UMC,Department of Plastic, Reconstructive & Hand Surgery
[5] location VUmc,Pediatric Surgical Centre, Emma Children’s Hospital
[6] Amsterdam Movement Sciences,undefined
[7] Amsterdam UMC,undefined
[8] location AMC and VUmc,undefined
来源:
Neural Computing and Applications
|
2022年
/
34卷
关键词:
Machine learning;
Post-burn scar contraction;
Morphoelasticity;
Feed-forward neural network;
Medical application;
Monte Carlo simulations;
35G20;
35L65;
35M10;
35Q74;
35Q80;
35Q92;
35R37;
68T07;
74-10;
74L15;
92-10;
92B20;
92C10;
92C17;
92C45;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Burn injuries can decrease the quality of life of a patient tremendously, because of esthetic reasons and because of contractions that result from them. In severe case, skin contraction takes place at such a large extent that joint mobility of a patient is significantly inhibited. In these cases, one refers to a contracture. In order to predict the evolution of post-wounding skin, several mathematical model frameworks have been set up. These frameworks are based on complicated systems of partial differential equations that need finite element-like discretizations for the approximation of the solution. Since these computational frameworks can be expensive in terms of computation time and resources, we study the applicability of neural networks to reproduce the finite element results. Our neural network is able to simulate the evolution of skin in terms of contraction for over one year. The simulations are based on 25 input parameters that are characteristic for the patient and the injury. One of such input parameters is the stiffness of the skin. The neural network results have yielded an average goodness of fit (R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^2$$\end{document}) of 0.9928 (± 0.0013). Further, a tremendous speed-up of 19354X was obtained with the neural network. We illustrate the applicability by an online medical App that takes into account the age of the patient and the length of the burn.
引用
收藏
页码:8635 / 8642
页数:7
相关论文