An Explicit Lower Bound for Blow Up Time in a Class of Nonlinear Wave Equations with Nonlinear Damping and Source Terms

被引:0
作者
Xiao-ming Peng
Ya-dong Shang
Xue-qin Wang
机构
[1] Guangdong University of Finance and Economics,School of Statistics and Mathematics
[2] Guangzhou University,School of Mathematics and Information Science
[3] South China Agricultural University,College of Mathematics and Informatics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2021年 / 37卷
关键词
lower bound; blow up; nonlinear wave equation; nonlinear damping; nonlinear source; 35L82; 58J45;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with an initial boundary value problem for a class of nonlinear wave equation with nonlinear damping and source terms whose solution may blow up in finite time. An explicit lower bound for blow up time is determined by means of a differential inequality argument if blow up occurs.
引用
收藏
页码:148 / 154
页数:6
相关论文
共 47 条
  • [1] Andrews G(1980)On the existence of solutions to the equation J. Diff. Eqns. 35 200-231
  • [2] Andrews G(1982) = J. Diff. Eqns. 44 306-341
  • [3] Ball J(1988) + σ( SIAM. J. Math. Anal 19 337-347
  • [4] Ang DD(1988)) SIAM. J. Math. Anal 19 1409-1418
  • [5] Dinh APN(1975)Asymptotic behaviour and changes of phase in one-diemnsional nonlinear visco-elasticity Canad. Math. Bull 18 181-187
  • [6] Ang DD(1968)Strong solutions of quasilinear wave equation with nonlinear damping J. Math. Mech. 17 707-728
  • [7] Dinh APN(1986)On the strong damped wave equation Demonstratio Math. 19 327-340
  • [8] Clements JC(1988) −Δ Proc. Roy. Soc. Edinburgh. 110 227-239
  • [9] Greenberg JM(1991) − Δ Ann. Mat. Pura Appl 160 77-87
  • [10] MacCamy RC(1990) + Nonlinear Anal 15 1005-1015