Analysis of a Beddington–DeAngelis food chain chemostat with periodically varying substrate

被引:4
作者
Guoping Pang
Lansun Chen
机构
[1] Yulin Normal University,Department of Mathematics and Computer Science
[2] Dalian University of Technology,Department of Applied Mathematics
来源
Journal of Mathematical Chemistry | 2008年 / 44卷
关键词
Beddington–DeAngelis functional response; Chemostat; Periodically varying substrate; Periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce and study a model of a Beddington–DeAngelis type food chain chemostat with periodically varying substrate. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Furthermore, we numerically simulate a model with sinusoidal input, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the periodic system shows two kinds of bifurcations, whose are period-doubling and period-halfing.
引用
收藏
页码:467 / 481
页数:14
相关论文
共 31 条
  • [1] Schaffer W.M.(1985)undefined IMA J. Math. Appl. Med. Biol. 2 221-252
  • [2] Cushing J.M.(1980)undefined J. Math. Biol. 10 348-400
  • [3] Hale J.K.(1983)undefined J. Math. Biol. 18 255-280
  • [4] Somolinos A.S.(1980)undefined J. Math. Biol. 18 115-132
  • [5] Hsu S.B.(1998)undefined Bull. Math. Biol. 60 703-719
  • [6] Alessandra G.(1992)undefined Bull. Math. Biol. 54 619-648
  • [7] Oscar D.F.(1993)undefined Theor. Popul. Biol. 44 203-224
  • [8] Sergio R.(1985)undefined SIAM J. Appl. Math. 45 435-449
  • [9] Kor M.(1995)undefined Math. Biosci. 129 111-142
  • [10] Sayler G.S.(1999)undefined SIAM J. Appl. Math. 59 1157-1177