Optimal control and parameter identification of a reaction–diffusion network propagation model

被引:0
作者
Linhe Zhu
Tianyu Yuan
机构
[1] Jiangsu University,School of Mathematical Sciences
来源
Nonlinear Dynamics | 2023年 / 111卷
关键词
Reaction–diffusion system; Parameter identification; Optimization method; Turing pattern; Complex networks;
D O I
暂无
中图分类号
学科分类号
摘要
In the era of rapid development of the network, information security is a topic worthy of attention. This paper establishes a reaction–diffusion rumor propagation model with secondary transmission mechanism. We derive the necessary conditions for its Turing instability and then obtain that an increase in media refutation rate γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} can effectively suppress rumors through sensitivity analysis. By converting the parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} to γx,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \left( \textbf{x},t\right) $$\end{document} and using the Projected Gradient Method, rumors are controlled as the target propagation mode. By applying the method of optimal control, the parameter identification of the system is achieved through three algorithms. The Projected Gradient Method can effectively identify the patterns of two unknown parameters and has global convergence, but the convergence speed is relatively slow. The Barzilar-Borwein method and the BFGS Quasi-Newton Algorithm can effectively improve the convergence speed while ensuring the reliability of the results. The Barzilar-Borwein method is used to effectively identify six parameters of the system, with a relative error of only 0.3030%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}. Finally, by changing the parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} to a spatial heterogeneity parameter γx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \left( \textbf{x}\right) $$\end{document}, we have achieved the reproduction of natural biological surface patterns through the Projected Gradient Method.
引用
收藏
页码:21707 / 21733
页数:26
相关论文
共 96 条
[1]  
Hu YH(2018)Rumor spreading model with the different attitudes towards rumors Phys. A 502 331-344
[2]  
Pan QH(2022)Dynamics analysis and optimal control for a delayed rumor-spreading model Mathematics 10 3455-3936
[3]  
Hou WB(2023)Dynamic analysis of a SIDRW rumor propagation model considering the effect of media reports and rumor refuters Nonlinear Dyn. 111 3925-157
[4]  
He MF(2019)C, Hu, Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism Chaos, Solitons Fractals 126 148-385
[5]  
Li CR(2019)Dynamical analysis of rumor spreading model in homogeneous complex networks Appl. Math. Comput. 359 374-794
[6]  
Ma ZJ(2019)Partial differential equation modeling of rumor propagation in complex networks with higher order of organization Chaos 29 053106-1161
[7]  
Pan WQ(2023)Dynamic analysis and optimal control of a reaction-diffusion rumor propagation model in multi-lingual environments J. Math. Anal. Appl. 521 126967-519
[8]  
Yan WJ(2021)Turing instability induced by complex networks in a reaction-diffusion information propagation model Inf. Sci. 578 762-3817
[9]  
Hu YH(2021)Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments Chaos, Solitons Fractals 153 111542-3063
[10]  
He RM(2023)Complex dynamic analysis of a reaction-diffusion network information propagation model with non-smooth control Inf. Sci. 622 1141-6791