An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data

被引:0
作者
Stefan Sommer
机构
[1] University of Copenhagen,Department of Computer Science (DIKU)
来源
Sankhya A | 2019年 / 81卷 / 1期
关键词
Principal component analysis; Manifold valued statistics; Stochastic development; Probabilistic PCA; Anisotropic normal distributions; Frame bundle; Primary: 62H25; Secondary: 53C99;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a probabilistic and infinitesimal view of how the principal component analysis procedure (PCA) can be generalized to analysis of nonlinear manifold valued data. Starting with the probabilistic PCA interpretation of the Euclidean PCA procedure, we show how PCA can be generalized to manifolds in an intrinsic way that does not resort to linearization of the data space. The underlying probability model is constructed by mapping a Euclidean stochastic process to the manifold using stochastic development of Euclidean semimartingales. The construction uses a connection and bundles of covariant tensors to allow global transport of principal eigenvectors, and the model is thereby an example of how principal fiber bundles can be used to handle the lack of global coordinate system and orientations that characterizes manifold valued statistics. We show how curvature implies non-integrability of the equivalent of Euclidean principal subspaces, and how the stochastic flows provide an alternative to explicit construction of such subspaces. We describe estimation procedures for inference of parameters and prediction of principal components, and we give examples of properties of the model on embedded surfaces.
引用
收藏
页码:37 / 62
页数:25
相关论文
共 15 条
[1]  
Delyon B(2006)Simulation of conditioned diffusion and application to parameter estimation Stoch. Process. Appl. 116 1660-1675
[2]  
Hu Y(1948)Les éléments aléatoires de nature quelconque dans un espace distancie Ann. Inst. H. Poincaré, 10 215-310
[3]  
Frechet M(2010)Intrinsic shape analysis: Geodesic PCA for Riemannian manifolds modulo isometric Lie group actions Stat. Sin. 20 1-100
[4]  
Huckemann S(2012)Analysis of principal nested spheres Biometrika 99 551-568
[5]  
Hotz T(1978)On the differential geometry of frame bundles of Riemannian manifolds Journal Fur Die Reine Und Angewandte Mathematik 1978 16-31
[6]  
Munk A(2016)Anisotropically weighted and nonholonomically constrained evolutions on manifolds Entropy 18 425-410
[7]  
Jung S(2017)Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry Journal of Geometric Mechanics 9 391-622
[8]  
Dryden IL(1999)Probabilistic principal component analysis Journal of the Royal Statistical Society. Series B 61 611-undefined
[9]  
Marron JS(undefined)undefined undefined undefined undefined-undefined
[10]  
Mok KP(undefined)undefined undefined undefined undefined-undefined