Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation

被引:0
作者
A. Alexandrou Himonas
Gerard Misiołek
Gustavo Ponce
Yong Zhou
机构
[1] University of Notre Dame,Department of Mathematics
[2] University of California,Department of Mathematics
[3] East China Normal University,Department of Mathematics
[4] Institute des Hautes Éudes Scientifiques,undefined
来源
Communications in Mathematical Physics | 2007年 / 271卷
关键词
Compact Support; Strong Solution; Propagation Speed; Shallow Water Equation; Unique Continuation;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solution of the Cauchy problem with compact initial profile can not be compactly supported at any later time unless it is the zero solution.
引用
收藏
页码:511 / 522
页数:11
相关论文
共 32 条
  • [1] Beals R.(2000)Multipeakons and the classical moment problem Adv. Math. 154 229-257
  • [2] Sattinger D.(1993)An integrable shallow water equation with peaked solutions Phys. Rev. Lett. 71 1661-1664
  • [3] Szmigielski J.(2005)Finite propagation speed for the Camassa-Holm equation J. Math. Phys. 46 4-328
  • [4] Camassa R.(1998)Global existence and blow-up for a shallow water equation Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 303-982
  • [5] Holm D.(1999)A shallow water equation on the circle Comm. Pure Appl. Math. 52 949-610
  • [6] Constantin A.(2000)Stability of peakons Comm. Pure Appl. Math. 53 603-988
  • [7] Constantin A.(2001)A few remarks on the Camassa-Holm equation Differ. Int. Eqs. 14 953-1823
  • [8] Escher J.(2006)On unique continuation of solutions of Schrödinger equations Comm. PDE 31 1811-66
  • [9] Constantin A.(1981/1982)Symplectic structures, their Backlund transformations and hereditary symmetries Phys. D 4 47-243
  • [10] McKean H.(1996)Some tricks from the symmetry-toolbox for nonlinear equations: generalization of the Camassa-Holm equation Physica D 95 229-347