Predictions for the leptonic Dirac CP violation phase: a systematic phenomenological analysis

被引:0
作者
I. Girardi
S. T. Petcov
A. V. Titov
机构
[1] SISSA/INFN,Kavli IPMU (WPI)
[2] University of Tokyo,undefined
来源
The European Physical Journal C | 2015年 / 75卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive predictions for the Dirac phase δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} present in the 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} unitary neutrino mixing matrix U=Ue†Uν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U = U_e^{\dagger } \, U_{\nu }$$\end{document}, where Ue\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_e$$\end{document} and Uν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\nu }$$\end{document} are 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} unitary matrices which arise from the diagonalisation, respectively, of the charged lepton and the neutrino mass matrices. We consider forms of Ue\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_e$$\end{document} and Uν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\nu }$$\end{document} allowing us to express δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} as a function of three neutrino mixing angles, present in U, and the angles contained in Uν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\nu }$$\end{document}. We consider several forms of Uν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\nu }$$\end{document} determined by, or associated with, symmetries, tri-bimaximal, bimaximal, etc., for which the angles in Uν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{\nu }$$\end{document} are fixed. For each of these forms and forms of Ue\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_e$$\end{document} allowing one to reproduce the measured values of the neutrino mixing angles, we construct the likelihood function for cosδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos \delta $$\end{document}, using (i) the latest results of the global fit analysis of neutrino oscillation data, and (ii) the prospective sensitivities on the neutrino mixing angles. Our results, in particular, confirm the conclusion, reached in earlier similar studies, that the measurement of the Dirac phase in the neutrino mixing matrix, together with an improvement of the precision on the mixing angles, can provide unique information as regards the possible existence of symmetry in the lepton sector.
引用
收藏
相关论文
共 131 条
  • [1] Giunti C(2002)undefined Phys. Rev. D 66 113006-undefined
  • [2] Tanimoto M(2004)undefined Nucl. Phys. B 687 31-undefined
  • [3] Frampton PH(2005)undefined Phys. Rev. D 71 073002-undefined
  • [4] Petcov ST(2004)undefined Phys. Rev. D 70 013003-undefined
  • [5] Rodejohann W(2013)undefined Mod. Phys. Lett. A 28 1350131-undefined
  • [6] Petcov ST(2004)undefined Nucl. Phys. B 689 157-undefined
  • [7] Rodejohann W(2007)undefined Phys. Lett. B 654 177-undefined
  • [8] Romanino A(2008)undefined Phys. Lett. B 665 378-undefined
  • [9] Gollu S(2015)undefined Mod. Phys. Lett. A 30 1550002-undefined
  • [10] Deepthi KN(2013)undefined JHEP 1311 091-undefined