Noncommutative geometry of the quantum disk

被引:0
作者
Slawomir Klimek
Matt McBride
J. Wilson Peoples
机构
[1] Indiana University-Purdue University Indianapolis,Department of Mathematical Sciences
[2] Mississippi State University,Department of Mathematics and Statistics
[3] Pennsylvania State University,Department of Mathematics
来源
Annals of Functional Analysis | 2022年 / 13卷
关键词
Operator algebras; Derivations; Smooth subalgebras; K-Theory; Noncommutative geometry; 46L05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss various aspects of the noncommutative geometry of a smooth subalgebra of the Toeplitz algebra. In particular, we study the structure of derivations on this subalgebra.
引用
收藏
相关论文
共 50 条
[11]   Intersecting Quantum Gravity with Noncommutative Geometry - a Review [J].
Aastrup, Johannes ;
Grimstrup, Jesper Moller .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[12]   Quantum Group of Isometries in Classical and Noncommutative Geometry [J].
Debashish Goswami .
Communications in Mathematical Physics, 2009, 285
[13]   On nonperturbative quantum field theory and noncommutative geometry [J].
Aastrup, Johannes ;
Grimstrup, Jesper Moller .
JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
[14]   Classification of differentials on quantum doubles and finite noncommutative geometry [J].
Majid, S .
HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 :167-188
[15]   Quantum Isometries of the Finite Noncommutative Geometry of the Standard Model [J].
Jyotishman Bhowmick ;
Francesco D’Andrea ;
Ludwik Dąbrowski .
Communications in Mathematical Physics, 2011, 307 :101-131
[16]   Fractional quantum numbers, complex orbifolds and noncommutative geometry [J].
Mathai, Varghese ;
Wilkin, Graeme .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (31)
[17]   Integrability and positivity in quantum field theory on noncommutative geometry [J].
Grosse, Harald ;
Wulkenhaar, Raimar .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 134 :249-262
[18]   Dirac operator on quantum homogeneous spaces and noncommutative geometry [J].
Owczarek, RM .
CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 :519-530
[19]   From quantum gravity to quantum field theory via noncommutative geometry [J].
Aastrup, Johannes ;
Grimstrup, Jesper Moller .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (03)
[20]   Loop groups and noncommutative geometry [J].
Carpi, Sebastiano ;
Hillier, Robin .
REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (09)