Conditional quantiles with varying Gaussians

被引:0
|
作者
Dao-Hong Xiang
机构
[1] Zhejiang Normal University,Department of Mathematics
来源
关键词
Learning theory; Quantile regression; Pinball loss; Varying Gaussian kernels; Variance-expectation bound; 68T05; 91E40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study conditional quantile regression by learning algorithms generated from Tikhonov regularization schemes associated with pinball loss and varying Gaussian kernels. Our main goal is to provide convergence rates for the algorithm and illustrate differences between the conditional quantile regression and the least square regression. Applying varying Gaussian kernels improves the approximation ability of the algorithm. Bounds for the sample error are achieved by using a projection operator, a variance-expectation bound derived from a condition on conditional distributions and a tight bound for the covering numbers involving the Gaussian kernels.
引用
收藏
页码:723 / 735
页数:12
相关论文
共 50 条
  • [31] Hierarchical linear regression models for conditional quantiles
    Maozai Tian
    Gemai Chen
    Science in China Series A: Mathematics, 2006, 49 : 1800 - 1815
  • [32] Inference for Optimal Split Point in Conditional Quantiles
    Fan, Yanqin
    Liu, Ruixuan
    Zhu, Dongming
    FRONTIERS OF ECONOMICS IN CHINA, 2016, 11 (01) : 40 - 59
  • [33] Kernel methods for estimating derivatives of conditional quantiles
    Lee, Young Kyung
    Lee, Eun Ryung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (04) : 365 - 373
  • [34] Note on conditional quantiles for functional ergodic data
    Benziadi, Fatima
    Laksaci, Ali
    Tebboune, Fethallah
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (06) : 628 - 633
  • [35] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [36] Simultaneous Estimation of Multiple Conditional Regression Quantiles
    Yan-ke Wu
    Ya-nan Hu
    Jian Zhou
    Mao-zai Tian
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 448 - 457
  • [37] Conditional quantiles of Gaussian measures in Hilbert space
    Shatskikh S.Ya.
    Journal of Mathematical Sciences, 1998, 89 (5) : 1553 - 1558
  • [38] Asymptotic properties of convergent estimators of conditional quantiles
    Berlinet, A
    Gannoun, A
    Matzner-Lober, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (05): : 611 - 614
  • [39] Hierarchical linear regression models for conditional quantiles
    TIAN Maozai & CHEN Gemai School of Statistics
    Department of Mathematics and Statistics
    Science in China(Series A:Mathematics), 2006, (12) : 1800 - 1815
  • [40] ESTIMATING CONDITIONAL QUANTILES AT THE ROOT OF A REGRESSION FUNCTION
    MUKERJEE, H
    ANNALS OF STATISTICS, 1992, 20 (04): : 2168 - 2176