Two Cu(II) complexes of curcumin derivatives, formulated as CuL2a (1) and CuL2b (2) [HLa = 1,7-bis(4-ethyloxy-3-methoxy-phenyl)-1,6-heptadiene-3,5-dione and HLb = 1,7-bis(4-butyloxy-3-methoxy-phenyl)-1,6-heptadiene-3,5-dione], have been synthesized and characterized by single-crystal X-ray diffraction, along with physicochemical and spectroscopic methods. In both complexes, each Cu(II) center is surrounded by four oxygen atoms from two β-diketone ligands in a square planar geometry. Complex 1 forms a 2D layer structure through intermolecular π–π stacking interactions, as well as weak coordination interactions between the Cu and O atoms of the solvent 1,4-dioxane molecules. Complex 2 displays a 1D column structure stabilized by intermolecular π–π stacking interactions. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays were used to evaluate the cytotoxicities of these complexes against three human cancer cell lines. The results show that the Cu(II) complexes exhibit more potent inhibition tumor growth in comparison with the free ligands.