共 8 条
[1]
Emerling B.M., Viollet B., Tormos K.V., Chandel N.S., Compound C inhibits hypoxic activation of HIF-1 independent of AMPK, FEBS Letters, 581, 29, pp. 5727-5731, (2007)
[2]
Brunelle J.K., Bell E.L., Quesada N.M., Vercauteren K., Tiranti V., Zeviani M., Scarpulla R.C., Chandel N.S., Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation, Cell Metabolism, 1, 6, pp. 409-414, (2005)
[3]
Guzy R.D., Hoyos B., Robin E., Chen H., Liu L., Mansfield K.D., Simon M.C., Hammerling U., Schumacker P.T., Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing, Cell Metabolism, 1, 6, pp. 401-408, (2005)
[4]
Mansfield K.D., Guzy R.D., Pan Y., Young R.M., Cash T.P., Schumacker P.T., Simon M.C., Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation, Cell Metabolism, 1, 6, pp. 393-399, (2005)
[5]
Chua Y.L., Dufour E., Dassa E.P., Rustin P., Jacobs H.T., Taylor C.T., Hagen T., Stabilization of HIF-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production, J Biol Chem, 285, pp. 31277-31284, (2010)
[6]
Boveris A., Chance B., The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem J, 134, pp. 707-716, (1973)
[7]
Hagen T., Taylor C.T., Lam F., Moncada S., Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF 1 alpha, Science, 302, pp. 975-978, (2003)
[8]
Chua Y.S., Chua Y.L., Hagen T., Structure Activity Analysis of 2- Methoxyestradiol Analogues Reveals Targeting of Microtubules as the Major Mechanism of Antiproliferative and Proapoptotic Activity, Mol Cancer Ther, 9, pp. 224-235, (2010)