CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses

被引:0
|
作者
Dongdong Mei
Yan Luo
Yan Wang
Jingshan Gong
机构
[1] the Second Clinical Medical College,Department of Radiology, Shenzhen People’s Hospital
[2] Jinan University,Department of Radiology and Biomedical Imaging
[3] University of California San Francisco,undefined
来源
Cancer Imaging | / 18卷
关键词
Lung adenocarcinoma; Computed tomography; Radiomics; Epidermal growth factor receptor;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Analysis of EGFR mutation status in malignant pleural effusion and plasma from patients with advanced lung adenocarcinoma
    Son, Seung-Myoung
    Woo, Chang Gok
    Han, Hye Sook
    Lee, Ki Hyeong
    Lim, Young Hyun
    Lee, Ok-Jun
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2020, 58 (09) : 1547 - 1555
  • [42] Explainable 18F-FDG PET/CT radiomics model for predicting EGFR mutation status in lung adenocarcinoma: a two-center study
    Zuo, Yan
    Liu, Qiufang
    Li, Nan
    Li, Panli
    Fang, Yichong
    Bian, Linjie
    Zhang, Jianping
    Song, Shaoli
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2024, 150 (10)
  • [43] Development of a Nomogram Based on 3D CT Radiomics Signature to Predict the Mutation Status of EGFR Molecular Subtypes in Lung Adenocarcinoma: A Multicenter Study
    Zhang, Guojin
    Deng, Liangna
    Zhang, Jing
    Cao, Yuntai
    Li, Shenglin
    Ren, Jialiang
    Qian, Rong
    Peng, Shengkun
    Zhang, Xiaodi
    Zhou, Junlin
    Zhang, Zhuoli
    Kong, Weifang
    Pu, Hong
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [44] Optimal 18F-FDG PET/CT radiomics model development for predicting EGFR mutation status and prognosis in lung adenocarcinoma: a multicentric study
    Zuo, Yan
    Liu, Qiufang
    Li, Nan
    Li, Panli
    Zhang, Jianping
    Song, Shaoli
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [45] Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT
    Li, Wei
    Wang, Xuexiang
    Zhang, Yuwei
    Li, Xubin
    Li, Qian
    Ye, Zhaoxiang
    CHINESE JOURNAL OF CANCER RESEARCH, 2018, 30 (04) : 415 - +
  • [46] CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction
    Xiaohu Li
    Wei Zhang
    Yongqiang Yu
    Guihong Zhang
    Lifen Zhou
    Zongshan Wu
    Bin Liu
    BMC Cancer, 20
  • [47] CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction
    Li, Xiaohu
    Zhang, Wei
    Yu, Yongqiang
    Zhang, Guihong
    Zhou, Lifen
    Wu, Zongshan
    Liu, Bin
    BMC CANCER, 2020, 20 (01)
  • [48] CT-based radiomic phenotypes of lung adenocarcinoma: a preliminary comparative analysis with targeted next-generation sequencing
    Liu, Xiaowen
    Xu, Ting
    Wang, Shuxing
    Chen, Yaxi
    Jiang, Changsi
    Xu, Wuyan
    Gong, Jingshan
    FRONTIERS IN MEDICINE, 2023, 10
  • [49] Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
    Xu, Fangyi
    Zhu, Wenchao
    Shen, Yao
    Wang, Jian
    Xu, Rui
    Qutesh, Chooah
    Song, Lijiang
    Gan, Yi
    Pu, Cailing
    Hu, Hongjie
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [50] PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs
    Yang, Liping
    Xu, Panpan
    Li, Mengyue
    Wang, Menglu
    Peng, Mengye
    Zhang, Ying
    Wu, Tingting
    Chu, Wenjie
    Wang, Kezheng
    Meng, Hongxue
    Zhang, Lingbo
    FRONTIERS IN ONCOLOGY, 2022, 12