Investigation of Methods for Increasing the Efficiency of Convolutional Neural Networks in Identifying Tennis Players

被引:0
|
作者
N. A. Andriyanov
V. E. Dementev
K. K. Vasiliev
A. G. Tashlinskii
机构
[1] Financial University under the Government of the Russian Federation,
[2] Ulyanovsk State Technical University,undefined
来源
Pattern Recognition and Image Analysis | 2021年 / 31卷
关键词
face recognition; convolutional neural networks; accuracy; precision; recall; probability of correct recognition; regularization; drop out; augmentation; doubly stochastic model; transfer learning; VGG-16; Kaggle; dogs vs. cats; Federer vs. Nadal;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:496 / 505
页数:9
相关论文
共 50 条
  • [21] Identifying the species of harvested tuna and billfish using deep convolutional neural networks
    Lu, Yi-Chin
    Tung, Chen
    Kuo, Yan-Fu
    ICES JOURNAL OF MARINE SCIENCE, 2020, 77 (04) : 1318 - 1329
  • [22] Methods for Preventing Visual Attacks in Convolutional Neural Networks Based on Data Discard and Dimensionality Reduction
    Andriyanov, Nikita
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [23] An increasing number of convolutional neural networks for fracture recognition and classification in orthopaedics ARE THESE EXTERNALLY VALIDATED AND READY FOR CLINICAL APPLICATION?
    Carmo, L. Oliveira e
    van den Merkhof, A.
    Olczak, J.
    Gordon, M.
    Jutte, P. C.
    Jaarsma, R. L.
    Ijpma, F. F. A.
    Doornberg, J. N.
    Prijs, J.
    BONE & JOINT OPEN, 2021, 2 (10): : 879 - 885
  • [24] A Comparative study on classification performance of Emphysema with transfer learning methods in deep convolutional neural networks
    Yazar, Selcuk
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (02) : 259 - 278
  • [25] Study of Fault Tolerance Methods for Hardware Implementations of Convolutional Neural Networks
    Solovyev, R. A.
    Stempkovsky, A. L.
    Telpukhov, D., V
    OPTICAL MEMORY AND NEURAL NETWORKS, 2019, 28 (02) : 82 - 88
  • [26] Comparing the Effectiveness of Two Convolutional Neural Networks Methods on Fault Diagnosis
    Liu, Yinping
    Li, Junmin
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 350 - 354
  • [27] Study of Fault Tolerance Methods for Hardware Implementations of Convolutional Neural Networks
    R. A. Solovyev
    A. L. Stempkovsky
    D. V. Telpukhov
    Optical Memory and Neural Networks, 2019, 28 : 82 - 88
  • [28] Identifying a Slums' Degree of Deprivation from VHR Images Using Convolutional Neural Networks
    Ajami, Alireza
    Kuffer, Monika
    Persello, Claudio
    Pfeffer, Karin
    REMOTE SENSING, 2019, 11 (11)
  • [29] Tensor Network Methods for Hyperparameter Optimization and Compression of Convolutional Neural Networks
    Naumov, A.
    Melnikov, A.
    Perelshtein, M.
    Melnikov, Ar.
    Abronin, V.
    Oksanichenko, F.
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [30] Effective methods of diabetic retinopathy detection based on deep convolutional neural networks
    Yunchao Gu
    Xinliang Wang
    Junjun Pan
    Zhifan Yong
    Shihui Guo
    Tianze Pan
    Yonghong Jiao
    Zhong Zhou
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 2177 - 2187