Tiling Convex Polygons with Congruent Equilateral Triangles

被引:0
|
作者
Eike Hertel
Christian Richter
机构
[1] Friedrich Schiller University,Institute of Mathematics
来源
Discrete & Computational Geometry | 2014年 / 51卷
关键词
Convex pentagon; Equilateral triangle; Tiling; Dissection; Numeri idonei; Idoneal number; Generalized Riemann Hypothesis;
D O I
暂无
中图分类号
学科分类号
摘要
We study the sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{v}=\{m \in\{1,2,\ldots\}: \mbox{there is a convex polygon in }\mathbb{R}^{2}\mbox{ that has }v\mbox{ vertices and can be tiled with $m$ congruent equilateral triangles}\}$\end{document}, v=3,4,5,6. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{3}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{4}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{6}$\end{document} can be quoted completely. The complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{1,2,\ldots\} \setminus\mathcal{T}_{5}$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{5}$\end{document} turns out to be a subset of Euler’s numeri idonei. As a consequence, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{1,2,\ldots\} \setminus\mathcal{T}_{5}$\end{document} can be characterized with up to two exceptions, and a complete characterization is given under the assumption of the Generalized Riemann Hypothesis.
引用
收藏
页码:753 / 759
页数:6
相关论文
共 50 条