共 50 条
Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo–Fabrizio fractional derivative
被引:0
作者:
Haili Qiao
Zhengguang Liu
Aijie Cheng
机构:
[1] Shandong University,School of Mathematics
[2] Shandong Normal University,School of Mathematics and Statistics
来源:
Advances in Difference Equations
|
/
2020卷
关键词:
Distributed-order;
Caputo–Fabrizio derivatives;
Compact finite difference;
Stability and convergence;
Numerical experiments;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grünwald formula. We show that these two schemes are unconditionally stable with convergence rates O(τ2+h2+Δα2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$O(\tau ^{2}+h^{2}+ \Delta \alpha ^{2})$\end{document} and O(τ2+h4+Δα4)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$O(\tau ^{2}+h^{4}+\Delta \alpha ^{4})$\end{document} in discrete L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{2}$\end{document}, respectively, where Δα, h, and τ are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.
引用
收藏
相关论文
共 50 条