Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo–Fabrizio fractional derivative

被引:0
作者
Haili Qiao
Zhengguang Liu
Aijie Cheng
机构
[1] Shandong University,School of Mathematics
[2] Shandong Normal University,School of Mathematics and Statistics
来源
Advances in Difference Equations | / 2020卷
关键词
Distributed-order; Caputo–Fabrizio derivatives; Compact finite difference; Stability and convergence; Numerical experiments;
D O I
暂无
中图分类号
学科分类号
摘要
We consider distributed-order partial differential equations with time fractional derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite difference schemes are established via Grünwald formula. We show that these two schemes are unconditionally stable with convergence rates O(τ2+h2+Δα2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2}+h^{2}+ \Delta \alpha ^{2})$\end{document} and O(τ2+h4+Δα4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\tau ^{2}+h^{4}+\Delta \alpha ^{4})$\end{document} in discrete L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}, respectively, where Δα, h, and τ are step sizes for distributed-order, space, and time variables, respectively. Finally, the performance of difference schemes is illustrated via numerical examples.
引用
收藏
相关论文
共 50 条
  • [31] The direct meshless local Petrov-Galerkin technique with its error estimate for distributed-order time fractional Cable equation
    Habibirad, Ali
    Hesameddini, Esmail
    Azin, Hadis
    Heydari, Mohammad Hossein
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 150 : 342 - 352
  • [32] Numerical solution of multidimensional time-space fractional differential equations of distributed order with Riesz derivative
    Ghuraibawi, Amer Abdulhussein Mohammed
    Marasi, H. R.
    Derakhshan, M. H.
    Kumar, Pushpendra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15186 - 15207
  • [33] Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations
    Li, Xiaoli
    Rui, Hongxing
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1107 - 1130
  • [34] Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations
    Xiaoli Li
    Hongxing Rui
    Numerical Algorithms, 2018, 79 : 1107 - 1130
  • [35] Spectral and pseudospectral schemes for the distributed order time fractional reaction-diffusion equation with Neumann boundary conditions
    Liu, Haiyu
    Lu, Shujuan
    Chen, Wenping
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3670 - 3675
  • [36] A Fourth-Order Time-Stepping Method for Two-Dimensional, Distributed-Order, Space-Fractional, Inhomogeneous Parabolic Equations
    Yousuf, Muhammad
    Furati, Khaled M.
    Khaliq, Abdul Q. M.
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [37] New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order
    Ran, Maohua
    Zhang, Chengjian
    APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 58 - 70
  • [38] AN EFFECTIVE METHOD FOR SOLVING THE MULTI TIME-FRACTIONAL TELEGRAPH EQUATION OF DISTRIBUTED ORDER BASED ON THE FRACTIONAL ORDER GEGENBAUER WAVELET
    Park, C.
    Rezaei, H.
    Derakhshan, M. H.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2025, 24 (01) : 16 - 37
  • [39] An RBF based meshless method for the distributed order time fractional advection-diffusion equation
    Liu, Quanzhen
    Mu, Shanjun
    Liu, Qingxia
    Liu, Baoquan
    Bi, Xiaolei
    Zhuang, Pinghui
    Li, Bochen
    Gao, Jian
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 96 : 55 - 63
  • [40] Combination of discrete technique with Bernoulli polynomial approximation for solving a class of time distributed-order and space variable-order fractional damped diffusion-wave equation
    Wang, Yifei
    Zhang, Li
    Li, Hu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, : 3125 - 3152