The main goal of this paper is the presentation of an elementary analytic technique which enables the evaluation of the so-called restricted sum formulas involving multiple zeta values with even arguments, i.e.
E(2c,K):=∑∑j=1Kcj=ccj∈Nζ(2c1,…,2cK),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E(2c,K):=\sum_{\substack{\sum_{j=1}^{K}c_{j}=c\\{c}_{j}\in\mathbb{N}}}
\zeta(2c_1,\ldots ,2c_K),$$\end{document}where c and K are arbitrary positive integers with c≥K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c\ge K}$$\end{document}. Though the young and general theory of the multiple Riemann zeta function with a rich application potential may be rather complicated, our contribution makes the evaluation of the term E(2c,K) intelligible to a broad mathematical audience.