On restricted sum formulas for multiple zeta values with even arguments

被引:0
|
作者
Marian Genčev
机构
[1] VŠB - Technical University of Ostrava,Faculty of Economics
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Riemann zeta function; Restricted sum formulas; Generating functions; Infinite series and products; Primary 11M32; 11M35; Secondary 11B68;
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of this paper is the presentation of an elementary analytic technique which enables the evaluation of the so-called restricted sum formulas involving multiple zeta values with even arguments, i.e. E(2c,K):=∑∑j=1Kcj=ccj∈Nζ(2c1,…,2cK),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(2c,K):=\sum_{\substack{\sum_{j=1}^{K}c_{j}=c\\{c}_{j}\in\mathbb{N}}} \zeta(2c_1,\ldots ,2c_K),$$\end{document}where c and K are arbitrary positive integers with c≥K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c\ge K}$$\end{document}. Though the young and general theory of the multiple Riemann zeta function with a rich application potential may be rather complicated, our contribution makes the evaluation of the term E(2c,K) intelligible to a broad mathematical audience.
引用
收藏
页码:9 / 22
页数:13
相关论文
共 19 条