Optical and structural characterization of aerosol-assisted CVD-grown Ni:ZnO thin films

被引:0
|
作者
Krutika Natu
Vipin K. Kaushik
Meena Laad
机构
[1] Symbiosis Institute of Technology (SIT),Department of Applied Science
[2] Symbiosis International (Deemed University) (SIU),Department of Applied Physics and Optoelectronics
[3] Shri G.S. Institute of Technology and Science,undefined
来源
关键词
Aerosol-assisted CVD; Ni:ZnO thin film; Raman spectroscopy; UV–Vis spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
The present work reports the successful growth and hence, the characterization of Ni:ZnO thin films with varying Ni contents in precursor solution (xNi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{Ni}$$\end{document} = 0.0, 0.10, 1.00, 4.84, 9.25 and 13.27 at.%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$at.\%$$\end{document}). The thin films were fabricated on soda lime glass substrate. An indigenously designed and developed aerosol-assisted chemical vapor deposition (AACVD) system has been used for the deposition of Ni:ZnO thin film. Zinc acetylacetonate and Nickel acetylacetonate were used as a source material for Zn and Ni, respectively. To prepare liquid precursor, isopropyl alcohol was used as a solvent for zinc acetylacetonate and Nickel acetylacetonate. The deposition was carried out at a constant growth temperature of 500 o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^o$$\end{document}C with oxygen as a carrier gas for the precursor. Raman spectroscopy, XRD and UV–visible spectroscopy characterizations were performed to investigate the effect of varying xNi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{Ni}$$\end{document} content over the optical as well as the structural properties of Ni:ZnO thin films. The average transmittance of undoped and Ni-doped ZnO came out to be about ≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 95%. The calculated thickness of Ni:ZnO was found to be of the order of hundreds of nanometre i.e., the thin films of sub-micron-sized thickness have been fabricated. The measured bandgaps of Ni:ZnO thin film were found to decrease (red shift) with increasing Ni content in precursor solution. The AACVD-grown Ni:ZnO thin films was found to have low-average absorbance approximately 1% and average reflectance approximately 4%. The XRD characteristic spectra of Ni:ZnO thin films reveal that the required phase is present with a little amount of impurities that matches well with the JCPDS data indicating the hexagonal structure. The particle sizes measured by the XRD Scherer’s formula, values of lattice constants and the volume of unit cell of Ni:ZnO were found to be in a good agreement with literature. Raman spectra of pure and Ni-doped ZnO thin films have been measured at room temperature in the wave number range 150–1300 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document}(TO) modes are obtained in the range of 382–384 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. While, the modes obtained in the ranges 569–572 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} and 1098–1104 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} are allocated as A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document}(LO) and A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document}(2LO) modes respectively.
引用
收藏
页码:200 / 208
页数:8
相关论文
共 50 条
  • [21] Magnesium Oxide Thin Films with Tunable Crystallographic Preferred Orientation via Aerosol-Assisted CVD
    Ponja, Sapna D.
    Parkin, Ivan P.
    Carmalt, Claire J.
    CHEMICAL VAPOR DEPOSITION, 2015, 21 (4-6) : 145 - 149
  • [22] Aerosol-Assisted CVD of SnO2 Thin Films for Gas-Sensor Applications
    Stoycheva, Toni T.
    Vallejos, Stella
    Pavelko, Roman G.
    Popov, Viktor S.
    Sevastyanov, Vladimir G.
    Correig, Xavier
    CHEMICAL VAPOR DEPOSITION, 2011, 17 (7-9) : 247 - 252
  • [23] Aerosol-Assisted plasma deposition of nanocomposite thin films
    Simonnet, C.
    Parmar, D.
    Pozsgay, V.
    Feron, M.
    Carnide, G.
    Kahn, M. L.
    Stafford, L.
    Clergereaux, R.
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (NANO), 2022, : 413 - 416
  • [24] CVD-grown thin films of molecule-based magnets
    de Caro, D
    Basso-Bert, M
    Sakah, J
    Casellas, H
    Legros, JP
    Valade, L
    Cassoux, P
    CHEMISTRY OF MATERIALS, 2000, 12 (03) : 587 - +
  • [25] Enhanced Hall Mobility and d0 Ferromagnetism in Li-Doped ZnO Thin Films Prepared by Aerosol-Assisted CVD
    Muhammad Arief Mustajab
    Pepen Arifin
    Suprijadi Suprijadi
    Toto Winata
    Electronic Materials Letters, 2024, 20 : 111 - 121
  • [26] Enhanced Hall Mobility and d0 Ferromagnetism in Li-Doped ZnO Thin Films Prepared by Aerosol-Assisted CVD
    Mustajab, Muhammad Arief
    Arifin, Pepen
    Suprijadi, Suprijadi
    Winata, Toto
    ELECTRONIC MATERIALS LETTERS, 2024, 20 (02) : 111 - 121
  • [27] Growth of ZrC thin films by aerosol-assisted MOCVD
    Won, Yong Sun
    Kim, Young Seok
    Varanasi, Venu G.
    Kryliouk, Olga
    Anderson, Timothy J.
    Sirimanne, Chatu T.
    McElwee-White, Lisa
    JOURNAL OF CRYSTAL GROWTH, 2007, 304 (02) : 324 - 332
  • [28] Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method
    Mosquera, Edgar
    Diaz-Droguett, Donovan E.
    Carvajal, Nicolas
    Roble, Martin
    Morel, Mauricio
    Espinoza, Rodrigo
    DIAMOND AND RELATED MATERIALS, 2014, 43 : 66 - 71
  • [29] CdS Thin Film Grown by Aerosol-Assisted Deposition Method
    Liu, Guogen
    Cheng, Zimeng
    Barar, Robert B.
    Pan, Jingong
    Georgiou, George E.
    Chin, Ken K.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012,
  • [30] Improved Texturing and Photocatalytic Efficiency in TiO2 Films Grown Using Aerosol-Assisted CVD and Atmospheric Pressure CVD
    Diesen, Veronica
    Jonsson, Mats
    Parkin, Ivan P.
    CHEMICAL VAPOR DEPOSITION, 2013, 19 (10-12) : 355 - 362