An Image-Based Comprehensive Approach for Automatic Segmentation of Left Ventricle from Cardiac Short Axis Cine MR Images

被引:0
|
作者
Su Huang
Jimin Liu
Looi Chow Lee
Sudhakar K Venkatesh
Lynette Li San Teo
Christopher Au
Wieslaw L. Nowinski
机构
[1] Agency for Science,Biomedical Imaging Lab, Singapore Bio
[2] Technology and Research (A*STAR),imaging Consortium
[3] National University of Singapore,Department of Diagnostic Radiology, Yong Loo Lin School of Medicine
来源
关键词
Image segmentation; cardiac imaging; image analysis; left ventricle;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation of the left ventricle is important in the assessment of cardiac functional parameters. Manual segmentation of cardiac cine MR images for acquiring these parameters is time-consuming. Accuracy and automation are the two important criteria in improving cardiac image segmentation methods. In this paper, we present a comprehensive approach to segment the left ventricle from short axis cine cardiac MR images automatically. Our method incorporates a number of image processing and analysis techniques including thresholding, edge detection, mathematical morphology, and image filtering to build an efficient process flow. This process flow makes use of various features in cardiac MR images to achieve high accurate segmentation results. Our method was tested on 45 clinical short axis cine cardiac images and the results are compared with manual delineated ground truth (average perpendicular distance of contours near 2 mm and mean myocardium mass overlapping over 90%). This approach provides cardiac radiologists a practical method for an accurate segmentation of the left ventricle.
引用
收藏
页码:598 / 608
页数:10
相关论文
共 50 条
  • [21] Automatic Segmentation of the Left Ventricle Cavity from Cine MRI Images
    Hadhoud, Marwa M. A.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 126 - 129
  • [22] Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences
    Tan, Li Kuo
    Liew, Yih Miin
    Lim, Einly
    McLaughlin, Robert A.
    MEDICAL IMAGE ANALYSIS, 2017, 39 : 78 - 86
  • [23] Fully automatic segmentation of right and left ventricle on short-axis cardiac MRI images
    Budai A.
    Suhai F.I.
    Csorba K.
    Toth A.
    Szabo L.
    Vago H.
    Merkely B.
    Computerized Medical Imaging and Graphics, 2020, 85
  • [24] Fully automatic segmentation of right and left ventricle on short-axis cardiac MRI images
    Budai, Adam
    Suhai, Ferenc, I
    Csorba, Kristof
    Toth, Attila
    Szabo, Liliana
    Vago, Hajnalka
    Merkely, Bela
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 85
  • [25] Automatic localization of the left ventricular blood pool centroid in short axis cardiac cine MR images
    Li Kuo Tan
    Yih Miin Liew
    Einly Lim
    Yang Faridah Abdul Aziz
    Kok Han Chee
    Robert A McLaughlin
    Medical & Biological Engineering & Computing, 2018, 56 : 1053 - 1062
  • [26] A variational approach for the segmentation of the left ventricle in MR cardiac images
    Paragios, N
    IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 153 - 160
  • [27] Automatic localization of the left ventricular blood pool centroid in short axis cardiac cine MR images
    Tan, Li Kuo
    Liew, Yih Miin
    Lim, Einly
    Abdul Aziz, Yang Faridah
    Chee, Kok Han
    McLaughlin, Robert A.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (06) : 1053 - 1062
  • [28] Automatic segmentation of right ventricle in cardiac cine MR images using a saliency analysis
    Atehortua, Angelica
    Zuluaga, Maria A.
    Garcia, Juan D.
    Romero, Eduardo
    MEDICAL PHYSICS, 2016, 43 (12) : 6270 - 6281
  • [29] Combining Registration and Minimum Surfaces for the Segmentation of the Left Ventricle in Cardiac Cine MR Images
    Jolly, Marie-Pierre
    Xue, Hui
    Grady, Leo
    Guehring, Jens
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 910 - 918
  • [30] Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
    Shaaf, Zakarya Farea
    Jamil, Muhammad Mahadi Abdul
    Ambar, Radzi
    Alattab, Ahmed Abdu
    Yahya, Anwar Ali
    Asiri, Yousef
    DIAGNOSTICS, 2022, 12 (02)