Categorical Equivalence Between PMVf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{PMV}_{\varvec{f}}$$\end{document}-Product Algebras and Semi-Low fu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{f}_{\varvec{u}}$$\end{document}-Rings

被引:0
作者
Lilian J. Cruz
Yuri A. Poveda
机构
[1] Universidad del Valle,
[2] Universidad Tecnológica de Pereira,undefined
关键词
-algebra; -algebra; -ring; Prime ideal; Spectrum;
D O I
10.1007/s11225-018-9832-6
中图分类号
学科分类号
摘要
An explicit categorical equivalence is defined between a proper subvariety of the class of PMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ PMV}$$\end{document}-algebras, as defined by Di Nola and Dvurečenskij, to be called PMVf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ PMV}_{f}$$\end{document}-algebras, and the category of semi-low fu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_u$$\end{document}-rings. This categorical representation is done using the prime spectrum of the MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ MV}$$\end{document}-algebras, through the equivalence between MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ MV}$$\end{document}-algebras and lu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_u$$\end{document}-groups established by Mundici, from the perspective of the Dubuc–Poveda approach, that extends the construction defined by Chang on chains. As a particular case, semi-low fu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_u$$\end{document}-rings associated to Boolean algebras are characterized.
引用
收藏
页码:1135 / 1158
页数:23
相关论文
共 8 条
[1]  
Chang CC(1959)A new proof of the completeness of the Łukasiewicz axioms Transactions of the American Mathematical Society. 93 74-90
[2]  
Dubuc EJ(2015)On the Equivalence Between MV-Algebras and l-Groups whit Strong Unit Studia Logica 103 807-814
[3]  
Poveda YA(2010)Representation theory of MV-algebras Annals of Pure and Applied Logic 161 1024-1046
[4]  
Dubuc Eduardo J.(2000)An algebraic approach to propositional fuzzy logic Journal of Logic, Language and Information. 9 91-124
[5]  
Poveda Yuri A.(2005)Subreducts of MV-algebras with product and product residuation Algebra Universalis. 53 109-137
[6]  
Montagna F(1986)Interpretation of AF C*-algebras in Lukasiewicz sentential calculus Journal of Functional Analysis 65 15-63
[7]  
Montagna F(undefined)undefined undefined undefined undefined-undefined
[8]  
Mundici D(undefined)undefined undefined undefined undefined-undefined