The S matrix of 6D super Yang-Mills and maximal supergravity from rational maps

被引:0
作者
Freddy Cachazo
Alfredo Guevara
Matthew Heydeman
Sebastian Mizera
John H. Schwarz
Congkao Wen
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics & Astronomy
[2] University of Waterloo,CECs Valdivia & Departamento de Física
[3] Universidad de Concepción,Centre for Research in String Theory, School of Physics & Astronomy
[4] Walter Burke Institute for Theoretical Physics,undefined
[5] California Institute of Technology 452-48,undefined
[6] Queen Mary University of London,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Scattering Amplitudes; Field Theories in Higher Dimensions; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present new formulas for n-particle tree-level scattering amplitudes of six-dimensional N=11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,1\right) $$\end{document} super Yang-Mills (SYM) and N=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,2\right) $$\end{document} supergravity (SUGRA). They are written as integrals over the moduli space of certain rational maps localized on the (n − 3)! solutions of the scattering equations. Due to the properties of spinor-helicity variables in six dimensions, the even-n and odd-n formulas are quite different and have to be treated separately. We first propose a manifestly supersymmetric expression for the even-n amplitudes of N=11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,1\right) $$\end{document} SYM theory and perform various consistency checks. By considering soft-gluon limits of the even-n amplitudes, we deduce the form of the rational maps and the integrand for n odd. The odd-n formulas obtained in this way have a new redundancy that is intertwined with the usual SL(2, ℂ) invariance on the Riemann sphere. We also propose an alternative form of the formulas, analogous to the Witten-RSV formulation, and explore its relationship with the symplectic (or Lagrangian) Grassmannian. Since the amplitudes are formulated in a way that manifests double-copy properties, formulas for the six-dimensional N=22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,2\right) $$\end{document} SUGRA amplitudes follow. These six-dimensional results allow us to deduce new formulas for five-dimensional SYM and SUGRA amplitudes, as well as massive amplitudes of four-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} SYM on the Coulomb branch.
引用
收藏
相关论文
共 95 条
  • [1] Witten E(2004)Perturbative gauge theory as a string theory in twistor space Commun. Math. Phys. 252 189-undefined
  • [2] Cachazo F(2013)Gravity from rational curves in twistor space Phys. Rev. Lett. 110 161301-undefined
  • [3] Skinner D(2014)Gravity in twistor space and its Grassmannian formulation SIGMA 10 051-undefined
  • [4] Cachazo F(2009)Amplitudes and spinor-helicity in six dimensions JHEP 07 075-undefined
  • [5] Mason L(2014)Scattering of massless particles in arbitrary dimensions Phys. Rev. Lett. 113 171601-undefined
  • [6] Skinner D(2014)Scattering of massless particles: scalars, gluons and gravitons JHEP 07 033-undefined
  • [7] Cheung C(2014)Ambitwistor strings and the scattering equations JHEP 07 048-undefined
  • [8] O’Connell D(2015)New ambitwistor string theories JHEP 11 038-undefined
  • [9] Cachazo F(2015)Loop integrands for scattering amplitudes from the Riemann sphere Phys. Rev. Lett. 115 121603-undefined
  • [10] He S(2016)One-loop amplitudes on the Riemann sphere JHEP 03 114-undefined