共 104 条
[71]
Hirai D.M., Musch T.I., Poole D.C., Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization, Am J Physiol Heart Circ Physiol, 309, pp. H1419-H1439, (2015)
[72]
Howell S., Maarek J.M., Fournier M., Sullivan K., Zhan W.Z., Sieck G.C., Congestive heart failure: differential adaptation of the diaphragm and latissimus dorsi, J Appl Physiol, 79, pp. 389-397, (1995)
[73]
Kitzman D.W., Nicklas B., Kraus W.E., Lyles M.F., Eggebeen J., Morgan T.M., Et al., Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction, Am J Physiol Heart Circ Physiol, 306, pp. H1364-H1370, (2014)
[74]
Tikunov B., Levine S., Mancini D., Chronic congestive heart failure elicts adaptations of endurance exercise in diaphragmatic muscle, Circulation, 95, pp. 910-916, (1997)
[75]
Wang Y., Pessin J.E., Mechanisms for fiber-type specificity of skeletal muscle atrophy, Curr Opin Clin Nutr Metab Care, 16, pp. 243-250, (2013)
[76]
Wing S.S., Lecker S.H., Jagoe R.T., Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks, Crit Rev Clin Lab Sci, 48, pp. 49-70, (2011)
[77]
Rabinovich R.A., Vilaro J., Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients, Curr Opin Pulm Med, 16, pp. 123-133, (2010)
[78]
Ushmorov A., Hack V., Droge W., Differential reconstitution of mitochondrial respiratory chain activity and plasma redox state by cysteine and ornithine in a model of cancer cachexia, Cancer Res, 59, pp. 3527-3534, (1999)
[79]
De Sousa E., Veksler V., Bigard X., Mateo P., Ventura-Clapier R., Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle, Ciculation, 102, pp. 1847-1853, (2000)
[80]
Mettauer B., Zoll J., Sanchez H., Lampert E., Ribera F., Veksler V., Et al., Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects, JACC, 4, pp. 947-954, (2001)