Lattice QCD with overlap fermions on GPUs

被引:0
|
作者
B. Walk
H. Wittig
E. Schömer
机构
[1] Universität Mainz,Institut für Kernphysik
[2] Universität Mainz,Institut für Informatik
来源
The European Physical Journal Special Topics | 2012年 / 210卷
关键词
Partition Function; Graphic Processing Unit; European Physical Journal Special Topic; Dirac Operator; Chiral Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
Lattice QCD is widely considered the correct theory of the strong force and is able to make quantitative statements in the low energy regime where perturbation theory is not applicable. The partition function of lattice QCD can be mapped onto a statistical mechanics system which then allows for the use of calculational methods such as Monte Carlo simulations. In recent years, the enormous success of GPU programming has also arrived at the lattice community. In this article, we give a short overview of Lattice QCD and motivate this need for large computing power. In our simulations we concentrate on a specific fermionic discretization, so-called Neuberger-Dirac fermions, which respect an exact chiral symmetry. We will discuss the algorithms we use in our GPU implementation which turns out to be an order of magnitude faster then the conventional CPU-equivalent. As an application we present results on the eigenvalue spectra in QCD and compare them to analytical calculations from Random Matrix Theory.
引用
收藏
页码:189 / 199
页数:10
相关论文
共 50 条
  • [1] Lattice QCD with overlap fermions on GPUs
    Walk, B.
    Wittig, H.
    Schoemer, E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 210 (01): : 189 - 199
  • [2] Lattice Quantum Chromodynamics with Overlap Fermions on GPUs
    Alexandru, Andrei
    COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (02) : 14 - 22
  • [3] Lattice QCD with the overlap fermions at strong gauge coupling
    Ichinose, I
    Nagao, K
    NUCLEAR PHYSICS B, 2000, 577 (1-2) : 279 - 290
  • [4] Lattice QCD with the overlap fermions at strong gauge coupling (II)
    Ichinose, I
    Nagao, K
    NUCLEAR PHYSICS B, 2001, 596 (1-2) : 231 - 242
  • [5] QCD simulations with staggered fermions on GPUs
    Bonati, C.
    Cossu, G.
    D'Elia, M.
    Incardona, P.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (04) : 853 - 863
  • [6] Recent developments of domain-wall/overlap fermions for lattice QCD
    Chiu, TW
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 135 - 141
  • [7] Overlap hypercube fermions in QCD
    Bietenholz, W
    Shcheredin, S
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 153 : 17 - 24
  • [8] Preliminary results from a simulation of quenched QCD with overlap fermions on a large lattice
    Berruto, F
    Garron, N
    Hoelbling, C
    Lellonch, L
    Rebbi, C
    Shoresh, N
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 471 - 479
  • [9] Constructing improved overlap fermions in QCD
    Bietenholz, W
    Eicker, N
    Hip, I
    Schilling, K
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 603 - 607
  • [10] Probing the QCD vacuum with overlap fermions
    Edwards, RG
    Heller, UM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 109 : 124 - 128