Multiple-soliton solutions and lumps of a (3+1)-dimensional generalized KP equation

被引:0
作者
Jianping Yu
Fudong Wang
Wenxiu Ma
Yongli Sun
Chaudry Masood Khalique
机构
[1] University of Science and Technology Beijing,Department of Applied Mathematics
[2] University of South Florida,Department of Mathematics and Statistics
[3] Beijing University of Chemical Technology,Department of Mathematics
[4] North-West University,International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences
来源
Nonlinear Dynamics | 2019年 / 95卷
关键词
Simplified Hirota’s method; Multiple-soliton solution; Lumps; Painlevé test;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation, which is physically meaningful. Applying the simplified Hirota’s method, we derive multiple-soliton solutions and lumps for this new model, where the coefficients of spatial variables are not constrained by any conditions. But the phase and the new model are dependent on all these coefficients. Moreover, this new model passes the Painlevé integrability test.
引用
收藏
页码:1687 / 1692
页数:5
相关论文
共 43 条
[1]  
Ma WX(2011)Generalized bilinear differential equations Stud. Nonlinear Sci. 2 140-144
[2]  
Ma WX(2013)Bilinear equations and resonant solutions characterized by Bell polynomials Rep. Math. Phys. 72 41-56
[3]  
Ma WX(2012)A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation Appl. Math. Lett. 12 1500-1504
[4]  
Abdeljabbar A(2005)Auto-Bäcklund transformation and new exact solutions of the (2+1)-dimensional Nizhniks-Novikovs-Veselov equation Int. J. Mod. Phys. C 16 393-42
[5]  
Wang DS(2015)A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model Appl. Math. Lett. 50 37-1220
[6]  
Zhang HQ(2015)Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model Nonlinear Dyn. 82 1211-315
[7]  
Lü X(2015)An integrable extension of TD hierarchy and generalized bi-Hamiltonian structures Mod. Phys. Lett. B 29 1550116-110
[8]  
Ma WX(1974)The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 249-730
[9]  
Khalique CM(2006)Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations J. Nonlinear Math. Phys. 13 90-29
[10]  
Lü X(2015)Modified Kadomtsev-Petviashvili equation in (3+1) dimensions: multiple front-wave solutions Commun. Theor. Phys. 63 727-46