Probing minimal SUSY scenarios in the light of muon g−2 and dark matter

被引:0
作者
Motoi Endo
Koichi Hamaguchi
Sho Iwamoto
Keisuke Yanagi
机构
[1] KEK Theory Center,Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)
[2] IPNS,Department of Physics
[3] KEK,Physics Department
[4] The Graduate University of Advanced Studies (Sokendai),undefined
[5] University of Tokyo,undefined
[6] University of Tokyo,undefined
[7] Technion-Israel Institute of Technology,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
Supersymmetry Phenomenology;
D O I
暂无
中图分类号
学科分类号
摘要
We study supersymmetric (SUSY) models in which the muon g −2 discrepancy and the dark matter relic abundance are simultaneously explained. The muon g − 2 discrepancy, or a 3σ deviation between the experimental and theoretical results of the muon anomalous magnetic moment, can be resolved by SUSY models, which implies at least three SUSY multiplets have masses of O100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}(100) $$\end{document} GeV. In particular, models with the bino, higgsino and slepton having O100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}(100) $$\end{document} GeV masses are not only capable to explain the muon g−2discrepancybutnaturallycontainstheneutralinodarkmatterwiththeobservedrelic abundance. We study constraints and future prospects of such models; in particular, we find that the LHC search for events with two hadronic taus and missing transverse mo-mentum can probe this scenario through chargino/neutralino production. It is shown that almost all the parameter space of the scenario can be probed at the high-luminosity LHC, and a large part can also be tested at the XENON1T experiment as well as at the ILC.
引用
收藏
相关论文
共 73 条
[1]  
Choudhury A(2017)Muon g − 2 and related phenomenology in constrained vector-like extensions of the MSSM JHEP 05 072-undefined
[2]  
Darmé L(2017)Probing the MSSM explanation of the muon g − 2 anomaly in dark matter experiments and at a 100 TeV pp collider Phys. Rev. D 95 055023-undefined
[3]  
Roszkowski L(2015)Reduced LHC constraints for higgsino-like heavier electroweakinos JHEP 11 050-undefined
[4]  
Sessolo EM(2015)Neutralinos and sleptons at the LHC in light of muon (g − 2) Phys. Rev. D 92 075033-undefined
[5]  
Trojanowski S(2015)Natural supersymmetry, muon g − 2 and the last crevices for the top squark Phys. Rev. D 92 055025-undefined
[6]  
Kobakhidze A(2015)Reconcile muon g − 2 anomaly with LHC data in SUGRA with generalized gravity mediation JHEP 06 079-undefined
[7]  
Talia M(2015)GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV JHEP 06 020-undefined
[8]  
Wu L(2015)Electroweak supersymmetry from the generalized minimal supergravity model in the MSSM Phys. Rev. D 91 055016-undefined
[9]  
Chakraborti M(2014)Testing SUSY models for the muon g − 2 anomaly via chargino-neutralino pair production at the LHC Phys. Rev. D 90 055011-undefined
[10]  
Chattopadhyay U(2014)The electroweak sector of the pMSSM in the light of LHC — 8 TeV and other data JHEP 07 019-undefined