A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space

被引:0
作者
Sadek Gala
机构
[1] University of Mostaganem,Department of Mathematics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2017年 / 33卷
关键词
quasi-geostrophic equations; logarithmical regularity criterion; Besov space; 35B65; 35Q35; 35Q86;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space B˙∞,∞−r(ℝ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)$$\end{document}. The result shows that if θ is a weak solutions satisfies ∫0T∥∇θ(⋅,s)∥B˙∞,∞−rαα−r1+ln(e+∥∇⊥θ(⋅,s)∥L2r)!ds<∞forsome0<r<αand0<α<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha } {{\alpha - r}}} }} {{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2} {r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$\end{document} then θ is regular at t = T. In view of the embedding L2r⊂M2rp⊂B˙∞,∞−r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}$$\end{document} with 2≤p<2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \leqslant p < \frac{2}{r}$$\end{document} and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31].
引用
收藏
页码:679 / 686
页数:7
相关论文
共 63 条
  • [1] Caffarelli L.(2010)Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann. Math. 171 1903-1930
  • [2] Vasseur A.(2006)On the regularity conditions for the dissipative quasi-geostrophic equations SIAM J. Math. Anal. 37 1649-1656
  • [3] Chae D.(2003)Global well-posedness in the supercritical dissipative quasi-geostrophic equations Commun Math. Phys. 233 297-311
  • [4] Chae D.(2007)A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation Commun. Math. Phys. 271 821-838
  • [5] Lee J.(2001)On the critical dissipative quasi-geostrophic equation Indiana Univ. Math. J. 50 97-107
  • [6] Chen Q.(1994)Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar Nonlinearity 7 1495-1533
  • [7] Miao C.(1999)Behavior of solutions of 2D quasi-geostrophic equations SIAM J. Math. Anal. 30 937-948
  • [8] Zhang Z.(2008)Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation Ann. Inst. H. Poincaré Anal. Non Lineaire 25 1103-1110
  • [9] Constantin P.(2009)Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations Ann. Inst. H. Poincaré Anal. Non Lineaire 26 159-180
  • [10] Cordoba D.(2004)A maximum principle applied to quasi-geostrophic equations Commum. Math. Phys. 249 511-528