Renormalization-group improved Higgs to two gluons decay rate

被引:0
作者
Gauhar Abbas
Astha Jain
Vartika Singh
Neelam Singh
机构
[1] Indian Institute of Technology (BHU),Department of Physics
来源
The European Physical Journal Plus | / 139卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the renormalization-group scale and scheme dependence of the H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow gg$$\end{document} decay rate at the order N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document}LO in the renormalization-group summed perturbative theory, which employs the summation of all renormalization-group accessible logarithms including the leading and subsequent four sub-leading logarithmic contributions to the full perturbative series expansion. Moreover, we study the higher-order behaviour of the H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow gg$$\end{document} decay width using the asymptotic Padé approximant method in four different renormalization schemes. Furthermore, the higher-order behaviour is independently investigated in the framework of the asymptotic Padé–Borel approximant method where generalized Borel-transform is used as an analytic continuation of the original perturbative expansion. The predictions of the asymptotic Padé–Borel approximant method are found to be in agreement with that of the asymptotic Padé approximant method. Finally, we provide the H→gg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \rightarrow gg$$\end{document} decay rate at the order N5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^5$$\end{document}LO in the fixed-order ΓN5LO=Γ0(1.8375±0.047αs(MZ),1%±0.0004Mt±0.0066MH±0.0036P±0.007s±0.0005sc),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{\mathrm{N^5LO}} \,=\, \Gamma _0 (1.8375 \pm 0.047 _{\alpha _s(M_Z),1\%}\pm 0.0004_{M_t} \pm 0.0066_{M_H} \pm 0.0036_{\textrm{P}} \pm 0.007_{\text {s}} \pm 0.0005_{sc} ),$$\end{document} and ΓRGSN5LO=Γ0(1.841±0.047αs(MZ),1%±0.0005Mt±0.0066MH±0.0002μ±0.0027P±0.001sc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{\mathrm{RGSN^5LO}} \,=\, \Gamma _0 (1.841 \pm 0.047 _{\alpha _s(M_Z),1\%} \pm 0.0005_{M_t}\pm 0.0066_{M_H} \pm 0.0002_{\mu } \pm 0.0027_{\textrm{P}} \pm 0.001_{sc} )$$\end{document} in the renormalization-group summed perturbative theories.
引用
收藏
相关论文
共 188 条
  • [1] Collaboration CMS(2012)Effective gauge theory and the effect of heavy Quarks in Higgs Boson decay Phys. Lett. B 716 30-716
  • [2] Ellis JR(1976)The large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons Nucl. Phys. B 106 292-1212
  • [3] Gaillard MK(1978)Higgs decay to gluons at NNLO Phys. Rev. Lett. 40 692-826
  • [4] Nanopoulos DV(1983)Production of Higgs bosons in proton colliders: QCD corrections Z. Phys. C 18 69-2779
  • [5] Georgi HM(1995)The Strong coupling and its running to four loops in a minimal MOM scheme Phys. Lett. B 362 134-872
  • [6] Glashow SL(2007)Four-loop QCD propagators and vertices with one vanishing external momentum Phys. Lett. B 655 148-4383
  • [7] Machacek ME(1991)undefined Phys. Lett. B 264 440-181
  • [8] Nanopoulos DV(1991)undefined Nucl. Phys. B 359 283-275
  • [9] Inami T(1994)undefined Phys. Rev. D 49 2298-2675
  • [10] Kubota T(2001)undefined Phys. Rev. D 64 013015-165