Well-Posedness of a Nonlinear Shallow Water Model for an Oscillating Water Column with Time-Dependent Air Pressure
被引:0
作者:
Edoardo Bocchi
论文数: 0引用数: 0
h-index: 0
机构:Universidad de Sevilla,Departamento de Análisis Matemático, Instituto de Matemáticas de la Universidad de Sevilla
Edoardo Bocchi
Jiao He
论文数: 0引用数: 0
h-index: 0
机构:Universidad de Sevilla,Departamento de Análisis Matemático, Instituto de Matemáticas de la Universidad de Sevilla
Jiao He
Gastón Vergara-Hermosilla
论文数: 0引用数: 0
h-index: 0
机构:Universidad de Sevilla,Departamento de Análisis Matemático, Instituto de Matemáticas de la Universidad de Sevilla
Gastón Vergara-Hermosilla
机构:
[1] Universidad de Sevilla,Departamento de Análisis Matemático, Instituto de Matemáticas de la Universidad de Sevilla
[2] Université Paris-Saclay,CNRS, Laboratoire de mathématiques d’Orsay
[3] Université de Bordeaux,Institut de Mathématiques de Bordeaux
来源:
Journal of Nonlinear Science
|
2023年
/
33卷
关键词:
Oscillating water column;
Fluid–structure interaction;
Initial boundary value problems for hyperbolic PDEs;
Time-dependent air pressure;
Local well-posedness;
35Q35;
76B15;
35L04;
74F10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We propose in this paper a new nonlinear mathematical model of an oscillating water column (OWC). The one-dimensional shallow water equations in the presence of this device are reformulated as a transmission problem related to the interaction between waves and a fixed partially immersed structure. By imposing the conservation of the total fluid-OWC energy in the non-damped scenario, we are able to derive a transmission condition that involves a time-dependent air pressure inside the chamber of the device, instead of a constant atmospheric pressure as in Bocchi et al. (ESAIM Proc Surv 70:68–83, 2021). We then show that the transmission problem can be reduced to a quasilinear hyperbolic initial boundary value problem with a semi-linear boundary condition determined by an ODE depending on the trace of the solution to the PDE at the boundary. Local well-posedness for general problems of this type is established via an iterative scheme by using linear estimates for the PDE and nonlinear estimates for the ODE.