Duality for convex infinite optimization on linear spaces

被引:0
|
作者
M. A. Goberna
M. Volle
机构
[1] University of Alicante,Department of Mathematics
[2] Avignon University,undefined
来源
Optimization Letters | 2022年 / 16卷
关键词
Convex infinite programming; Lagrangian duality; Haar duality; Limiting formulas;
D O I
暂无
中图分类号
学科分类号
摘要
This note establishes a limiting formula for the conic Lagrangian dual of a convex infinite optimization problem, correcting the classical version of Karney [Math. Programming 27 (1983) 75-82] for convex semi-infinite programs. A reformulation of the convex infinite optimization problem with a single constraint leads to a limiting formula for the corresponding Lagrangian dual, called sup-dual, and also for the primal problem in the case when strong Slater condition holds, which also entails strong sup-duality.
引用
收藏
页码:2501 / 2510
页数:9
相关论文
共 50 条