Duality for convex infinite optimization on linear spaces

被引:0
|
作者
M. A. Goberna
M. Volle
机构
[1] University of Alicante,Department of Mathematics
[2] Avignon University,undefined
来源
Optimization Letters | 2022年 / 16卷
关键词
Convex infinite programming; Lagrangian duality; Haar duality; Limiting formulas;
D O I
暂无
中图分类号
学科分类号
摘要
This note establishes a limiting formula for the conic Lagrangian dual of a convex infinite optimization problem, correcting the classical version of Karney [Math. Programming 27 (1983) 75-82] for convex semi-infinite programs. A reformulation of the convex infinite optimization problem with a single constraint leads to a limiting formula for the corresponding Lagrangian dual, called sup-dual, and also for the primal problem in the case when strong Slater condition holds, which also entails strong sup-duality.
引用
收藏
页码:2501 / 2510
页数:9
相关论文
共 50 条
  • [1] Duality for convex infinite optimization on linear spaces
    Goberna, M. A.
    Volle, M.
    OPTIMIZATION LETTERS, 2022, 16 (08) : 2501 - 2510
  • [2] Correction to: Duality for convex infinite optimization on linear spaces
    M. A. Goberna
    M. Volle
    Optimization Letters, 2022, 16 (8) : 2511 - 2511
  • [3] ON LINEAR VECTOR OPTIMIZATION DUALITY IN INFINITE-DIMENSIONAL SPACES
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (03): : 407 - 415
  • [4] New glimpses on convex infinite optimization duality
    M. A. Goberna
    M. A. López
    M. Volle
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 431 - 450
  • [5] New glimpses on convex infinite optimization duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 431 - 450
  • [6] Primal Attainment in Convex Infinite Optimization Duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (04) : 1043 - 1064
  • [7] Relaxed Larangian duality in convex infinite optimization: reducibility and strong duality
    Dinh, N.
    Goberna, M. A.
    Lopez-Cerda, M. A.
    Volle, M.
    OPTIMIZATION, 2023, 72 (01) : 189 - 214
  • [8] A Unifying Approach to Robust Convex Infinite Optimization Duality
    Nguyen Dinh
    Miguel Angel Goberna
    Marco Antonio López
    Michel Volle
    Journal of Optimization Theory and Applications, 2017, 174 : 650 - 685
  • [9] WEAK SHARP MINIMA FOR CONVEX INFINITE OPTIMIZATION PROBLEMS IN NORMED LINEAR SPACES
    Li, Chong
    Meng, Li
    Peng, Lihui
    Hu, Yaohua
    Yao, Jen-Chih
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 1999 - 2021
  • [10] A Unifying Approach to Robust Convex Infinite Optimization Duality
    Nguyen Dinh
    Angel Goberna, Miguel
    Antonio Lopez, Marco
    Volle, Michel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (03) : 650 - 685