On a Microscopic Representation of Space-Time III

被引:0
作者
Rolf Dahm
机构
[1] beratung für IS,
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Relativity; Unification; Quantum field theory; Dirac theory; Clifford algebra; Geometry; Projective geometry; Line geometry; Line Complex; Complex geometry; Congruences; Primary 83E99; Secondary 14N99;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Dirac (Clifford) algebra γμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^{\mu }$$\end{document} as initial stage of our discussion, we summarize previous work with respect to the isomorphic 15 dimensional Lie algebra su*(4) as complex embedding of sl(2,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}), the relation to the compact group SU(4) as well as subgroups and group chains. The main subject, however, is to relate these technical procedures to the geometrical (and physical) background which we see in projective and especially in line geometry of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document}. This line geometrical description, however, leads to applications and identifications of line Complexe and the discussion of technicalities versus identifications of classical line geometrical concepts, Dirac’s ‘square root of p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2}$$\end{document}’, the discussion of dynamics and the association of physical concepts like electromagnetism and relativity. We outline a generalizable framework and concept, and we close with a short summary and outlook.
引用
收藏
相关论文
共 50 条
  • [41] Is Minkowski Space-Time Compatible with Quantum Mechanics?
    Eugene V. Stefanovich
    Foundations of Physics, 2002, 32 : 673 - 703
  • [42] GENERALIZED LORENTZ GROUP OF SPACE-TIME TRANSFORMATIONS
    Yarman, Tolga
    Altintas, Azmi A.
    Kholmetskii, Alexander L.
    Arik, Metin
    Marchal, Christian B.
    Yarman, Ozan
    Ozaydin, Fatih
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 987 - 1008
  • [43] Is space-time really curved? An experimental test
    Consoli, Maurizio
    FRONTIERS OF FUNDAMENTAL PHYSICS, 2012, 1446 : 190 - 200
  • [44] Effects of nonstationary space-time geometry on observables
    Gaffour, Lakhdar
    PHYSICS ESSAYS, 2009, 22 (03) : 288 - 292
  • [45] Quantized Space-Time and Black Hole Entropy
    Ma, Meng-Sen
    Li, Huai-Fan
    Zhao, Ren
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (06)
  • [46] Worm domains and Fefferman space-time singularities
    Barletta, Elisabetta
    Dragomir, Sorin
    Peloso, Marco M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 120 : 142 - 168
  • [47] Canonical quantum gravity on noncommutative space-time
    Kober, Martin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (17):
  • [48] On the geometry of the space-time and motion of the spinning bodies
    Trencevski, Kostadin
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (03): : 296 - 316
  • [49] Could motion be space-time expanding and contracting?
    De Silva, Frank
    PHYSICS ESSAYS, 2023, 36 (01) : 112 - 116
  • [50] Congruences of Fluids in a Finslerian Anisotropic Space-Time
    P. C. Stavrinos
    International Journal of Theoretical Physics, 2005, 44 : 245 - 254