On a Microscopic Representation of Space-Time III

被引:0
作者
Rolf Dahm
机构
[1] beratung für IS,
来源
Advances in Applied Clifford Algebras | 2019年 / 29卷
关键词
Relativity; Unification; Quantum field theory; Dirac theory; Clifford algebra; Geometry; Projective geometry; Line geometry; Line Complex; Complex geometry; Congruences; Primary 83E99; Secondary 14N99;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Dirac (Clifford) algebra γμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^{\mu }$$\end{document} as initial stage of our discussion, we summarize previous work with respect to the isomorphic 15 dimensional Lie algebra su*(4) as complex embedding of sl(2,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}), the relation to the compact group SU(4) as well as subgroups and group chains. The main subject, however, is to relate these technical procedures to the geometrical (and physical) background which we see in projective and especially in line geometry of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document}. This line geometrical description, however, leads to applications and identifications of line Complexe and the discussion of technicalities versus identifications of classical line geometrical concepts, Dirac’s ‘square root of p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2}$$\end{document}’, the discussion of dynamics and the association of physical concepts like electromagnetism and relativity. We outline a generalizable framework and concept, and we close with a short summary and outlook.
引用
收藏
相关论文
共 50 条
  • [21] Nonassociative Geometry and Discrete Space-Time
    Lev Sabinin
    International Journal of Theoretical Physics, 2001, 40 : 351 - 358
  • [22] Theory of Spinors in Curved Space-Time
    Gu, Ying-Qiu
    SYMMETRY-BASEL, 2021, 13 (10):
  • [23] Gauge and space-time symmetry unification
    Besprosvany, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (12) : 2797 - 2836
  • [24] LIGHT KINEMATICS IN GALILEAN SPACE-TIME
    TREMPE, J
    PHYSICS ESSAYS, 1992, 5 (01) : 121 - 125
  • [25] Casimir effect in a quantum space-time
    Gambini, Rodolfo
    Olmedo, Javier
    Pullin, Jorge
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (11)
  • [26] Toward an Axiomatic Pregeometry of Space-Time
    S. E.Perez Bergliaffa
    G. E. Romero
    H. Vucetich
    International Journal of Theoretical Physics, 1998, 37 : 2281 - 2298
  • [27] Space-time singularities in Weyl manifolds
    Lobo, I. P.
    Barreto, A. B.
    Romero, C.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (09):
  • [28] Nonassociative geometry and discrete space-time
    Sabinin, L
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (01) : 351 - 358
  • [29] Confronting Finsler space-time with experiment
    Laemmerzahl, Claus
    Lorek, Dennis
    Dittus, Hansjoerg
    GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (06) : 1345 - 1353
  • [30] Space-time curvature and recession velocities
    Liebscher, D.-E.
    ASTRONOMISCHE NACHRICHTEN, 2007, 328 (06) : 586 - 587