On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion

被引:0
|
作者
J. J. Benito
A. García
L. Gavete
M. Negreanu
F. Ureña
A. M. Vargas
机构
[1] UNED,Instituto de Matemática Interdisciplinar, Depto. de Análisis Matemático y Matemática Aplicada
[2] ETSII,undefined
[3] UPM,undefined
[4] ETSIM,undefined
[5] Universidad Complutense de Madrid,undefined
来源
关键词
Chemotaxis systems; Generalized finite difference; Meshless method; Asymptotic stability;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the numerical analysis of a discrete version of a nonlinear reaction–diffusion system consisting of an ordinary equation coupled to a quasilinear parabolic PDE with a chemotactic term. The parabolic equation of the system describes the behavior of a biological species, while the ordinary equation defines the concentration of a chemical substance. The system also includes a logistic-like source, which limits the growth of the biological species and presents a time-periodic asymptotic behavior. We study the convergence of the explicit discrete scheme obtained by means of the generalized finite difference method and prove that the nonnegative numerical solutions in two-dimensional space preserve the asymptotic behavior of the continuous ones. Using different functions and long-time simulations, we illustrate the efficiency of the developed numerical algorithms in the sense of the convergence in space and in time.
引用
收藏
页码:625 / 636
页数:11
相关论文
共 50 条
  • [1] On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (03) : 625 - 636
  • [2] Solving a reaction-diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [3] Solving the reaction-diffusion Brusselator system using Generalized Finite Difference Method
    Garcia, Angel
    Urena, Francisco
    Vargas, Antonio M.
    AIMS MATHEMATICS, 2024, 9 (05): : 13211 - 13223
  • [4] Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 356 - 371
  • [5] Solving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Method
    Benito, J. J.
    Garcia, A.
    Gavete, L.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 762 - 777
  • [6] Finite element method for solving Keller–Segel chemotaxis system with cross-diffusion
    Gurusamy A.
    Balachandran K.
    International Journal of Dynamics and Control, 2018, 6 (02) : 539 - 549
  • [7] The finite difference/finite volume method for solving the fractional diffusion equation
    Zhang, Tie
    Guo, Qingxin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 120 - 134
  • [8] A generalized finite difference method for solving elasticity interface problems
    Xing, Yanan
    Song, Lina
    Fan, Chia-Ming
    Engineering Analysis with Boundary Elements, 2021, 128 : 105 - 117
  • [9] A generalized finite difference method for solving elliptic interface problems
    Xing, Yanan
    Song, Lina
    He, Xiaoming
    Qiu, Changxin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 178 : 109 - 124
  • [10] A generalized finite difference method for solving biharmonic interface problems
    Xing, Yanan
    Song, Lina
    Li, Po-Wei
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 132 - 144