Conjugations and Complex Symmetric Toeplitz Operators on the Weighted Hardy Space

被引:0
作者
Eungil Ko
Ji Eun Lee
Jongrak Lee
机构
[1] Ewha Womans University,Department of Mathematics
[2] Sejong University,Department of Mathematics and Statistics
[3] Jeju National University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Conjugation; complex symmetric operator; Toeplitz operator; weighted Hardy space; Primary 47B35; 47B15; Secondary 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new conjugation Cξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\xi }$$\end{document} on the weighted Hardy space Hρ(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\rho }(\mathbb {D})$$\end{document}, where Cξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\xi }$$\end{document} is given by (2.1) in Theorem 2.2. In particular, we prove that Cξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\xi }$$\end{document} and Cμ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mu ,\lambda }$$\end{document} are unitarily equivalent where Cμ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mu ,\lambda }$$\end{document} is given in Ko and Lee (J Math Anal Appl 434:20–34, 2016). Using this, we investigate a complex symmetric Toeplitz operator Tφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\varphi }$$\end{document} with respect to the conjugation Cξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\xi }$$\end{document} on the weighted Hardy space Hρ(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\rho }(\mathbb {D})$$\end{document}. Finally, we consider Cμ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\mu ,\lambda }$$\end{document}-invariant of Berezin transform.
引用
收藏
相关论文
共 16 条
[1]  
Axler S(1991)Commuting Toeplitz operators with harmonic symbols Integr. Equ. Oper. Theory 14 1-12
[2]  
Cuckovic Z(2018)A new necessary condition for the hyponormality of Toeplitz operators on the Bergman space J. Oper. Theory 79 287-300
[3]  
Cuckovic Z(2006)Complex symmetric operators and applications Trans. Am. Math. Soc. 358 1285-1315
[4]  
Curto RE(2007)Complex symmetric operators and applications II Trans. Am. Math. Soc. 359 3913-3931
[5]  
Garcia SR(2014)Mathematical and physical aspects of complex symmetric operators J. Phys. A Math. Theory 47 1-51
[6]  
Putinar M(2016)On complex symmetric Toeplitz operators J. Math. Anal. Appl. 434 20-34
[7]  
Garcia SR(2007)Weighted composition operator on weighted Bergman space Extract Math. 22 245-256
[8]  
Putinar M(1997)The Berezin transform and operators on spaces of analytic functions Banach Center Publ. 38 361-380
[9]  
Garcia SR(undefined)undefined undefined undefined undefined-undefined
[10]  
Prodan E(undefined)undefined undefined undefined undefined-undefined