Some classes of power functions with low c-differential uniformity over finite fields

被引:1
|
作者
Zhengbang Zha
Lei Hu
机构
[1] Luoyang Normal University,School of Mathematical Sciences
[2] Institute of Information Engineering,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,School of Cyber Security
[4] University of Chinese Academy of Sciences,undefined
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Almost perfect nonlinear function; Differential uniformity; Perfect nonlinear function; 94A60; 11T71; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
Functions with low c-differential uniformity have optimal resistance to some types of differential cryptanalysis. In this paper, we investigate the c-differential uniformity of power functions over finite fields of odd characteristic. Based on some known almost perfect nonlinear functions, we present several classes of power functions f(x)=xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=x^d$$\end{document} with cΔf≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{c}\varDelta _f\le 3$$\end{document}. Especially, two new classes of perfect c-nonlinear power functions are proposed.
引用
收藏
页码:1193 / 1210
页数:17
相关论文
共 50 条
  • [31] The differential uniformity of the power functions xpn+5/2 over Fpn
    Yuan, Wenping
    Du, Xiaoni
    Zhou, Huan
    Qiao, Xingbin
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 105
  • [32] On (− 1)-differential uniformity of ternary APN power functions
    Haode Yan
    Cryptography and Communications, 2022, 14 : 357 - 369
  • [33] On (-1)-differential uniformity of ternary APN power functions
    Yan, Haode
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (02): : 357 - 369
  • [34] On the boomerang uniformity of a class of permutation quadrinomials over finite fields
    Wu, Yanan
    Wang, Lisha
    Li, Nian
    Zeng, Xiangyong
    Tang, Xiaohu
    DISCRETE MATHEMATICS, 2022, 345 (10)
  • [35] Differential Spectrum of Kasami Power Permutations Over Odd Characteristic Finite Fields
    Yan, Haode
    Zhou, Zhengchun
    Weng, Jian
    Wen, Jinming
    Helleseth, Tor
    Wang, Qi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6819 - 6826
  • [36] The multivariate method strikes again: New power functions with low differential uniformity in odd characteristic
    Felke, Patrick
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (05): : 841 - 857
  • [37] The multivariate method strikes again: New power functions with low differential uniformity in odd characteristic
    Patrick Felke
    Cryptography and Communications, 2020, 12 : 841 - 857
  • [38] The Complete Differential Spectrum of a Class of Power Permutations Over Odd Characteristic Finite Fields
    Yan, Haode
    Mesnager, Sihem
    Tan, Xiantong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 7426 - 7438
  • [39] New PcN and APcN functions over finite fields
    Yanan Wu
    Nian Li
    Xiangyong Zeng
    Designs, Codes and Cryptography, 2021, 89 : 2637 - 2651
  • [40] STRUCTURAL WEAKNESSES OF PERMUTATIONS WITH A LOW DIFFERENTIAL UNIFORMITY AND GENERALIZED CROOKED FUNCTIONS
    Canteaut, Anne
    Naya-Plasencia, Maria
    FINITE FIELDS: THEORY AND APPLICATIONS, 2010, 518 : 55 - 71