Some classes of power functions with low c-differential uniformity over finite fields

被引:1
|
作者
Zhengbang Zha
Lei Hu
机构
[1] Luoyang Normal University,School of Mathematical Sciences
[2] Institute of Information Engineering,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,School of Cyber Security
[4] University of Chinese Academy of Sciences,undefined
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Almost perfect nonlinear function; Differential uniformity; Perfect nonlinear function; 94A60; 11T71; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
Functions with low c-differential uniformity have optimal resistance to some types of differential cryptanalysis. In this paper, we investigate the c-differential uniformity of power functions over finite fields of odd characteristic. Based on some known almost perfect nonlinear functions, we present several classes of power functions f(x)=xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)=x^d$$\end{document} with cΔf≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{c}\varDelta _f\le 3$$\end{document}. Especially, two new classes of perfect c-nonlinear power functions are proposed.
引用
收藏
页码:1193 / 1210
页数:17
相关论文
共 50 条
  • [21] On the differential uniformities of functions over finite fields
    LongJiang Qu
    Chao Li
    QingPing Dai
    ZhiYin Kong
    Science China Mathematics, 2013, 56 : 1477 - 1484
  • [22] C-differential bent functions and perfect nonlinearity
    Stanica, Pantelimon
    Gangopadhyay, Sugata
    Geary, Aaron
    Riera, Constanza
    Tkachenko, Anton
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 160 - 171
  • [24] On the Differential Spectrum and the APcN Property of a Class of Power Functions Over Finite Fields
    Tu, Ziran
    Li, Nian
    Wu, Yanan
    Zeng, Xiangyong
    Tang, Xiaohu
    Jiang, Yupeng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (01) : 582 - 597
  • [25] A lower bound for differential uniformity by multiplicative complexity & bijective functions of multiplicative complexity 1 over finite fields
    Matthias Johann Steiner
    Cryptography and Communications, 2024, 16 : 285 - 308
  • [26] A lower bound for differential uniformity by multiplicative complexity & bijective functions of multiplicative complexity 1 over finite fields
    Steiner, Matthias Johann
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (02): : 285 - 308
  • [27] Characters, Weil sums and c-differential uniformity with an application to the perturbed Gold function
    Pantelimon Stănică
    Constanza Riera
    Anton Tkachenko
    Cryptography and Communications, 2021, 13 : 891 - 907
  • [28] Characters, Weil sums and c-differential uniformity with an application to the perturbed Gold function
    Stanica, Pantelimon
    Riera, Constanza
    Tkachenko, Anton
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (06): : 891 - 907
  • [29] Constructing Functions with Low Differential Uniformity
    Bergman, Emily
    Coulter, Robert S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (02)
  • [30] Constructing Functions with Low Differential Uniformity
    Emily Bergman
    Robert S. Coulter
    Mediterranean Journal of Mathematics, 2022, 19