Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations

被引:0
作者
Guang-hua Gao
Zhi-zhong Sun
机构
[1] Nanjing University of Posts and Telecommunications,College of Science
[2] Southeast University,Department of Mathematics
来源
Journal of Scientific Computing | 2016年 / 69卷
关键词
Distributed order; Fractional wave equations; Difference scheme; ADI; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Two alternating direction implicit difference schemes are established for solving a class of two-dimensional time distributed-order wave equations. The schemes are proved to be unconditionally stable and convergent in the maximum norm with the convergence orders O(τ2+h12+h22+Δγ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^2+h_1^2+h_2^2+\Delta \gamma ^2)$$\end{document} and O(τ2+h14+h24+Δγ4),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^2+h_1^4+h_2^4+\Delta \gamma ^4),$$\end{document} respectively, where τ,hi(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau , h_i\; (i=1,2)$$\end{document} and Δγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \gamma $$\end{document} are the step sizes in time, space and distributed order. Also, several numerical experiments are carried out to validate the theoretical results.
引用
收藏
页码:506 / 531
页数:25
相关论文
共 57 条
[1]  
Metzler R(2000)The random walks guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 1-77
[2]  
Klafter J(2011)Fractional Langevin equations of distributed order Phys. Rev. E 83 031136-1235
[3]  
Eab CH(2006)Stochastic model for ultraslow diffusion Stoch. Process. Appl. 116 1215-1290
[4]  
Lim SC(2008)Time-fractional diffusion of distributed order J. Vib. Control 14 1267-1917
[5]  
Meerschaert M(2009)Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations Proc. R. Soc. A 465 1893-316
[6]  
Scheffler H(2013)Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density Fract. Calc. Appl. Anal. 16 297-1136
[7]  
Mainardi F(2014)Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations Fract. Calc. Appl. Anal. 17 1114-305
[8]  
Pagnini G(2015)An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time Electron. Trans. Numer. Anal. 44 289-C478
[9]  
Mura A(2014)A numerical investigation of the time distributed-order diffusion model ANZIAM J. 55 C464-838
[10]  
Gorenflo R(2015)Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains IMA J. Appl. Math. 80 825-227