How to determine linear complexity and k-error linear complexity in some classes of linear recurring sequences

被引:0
作者
Wilfried Meidl
机构
[1] Sabancı University,
[2] MDBF,undefined
来源
Cryptography and Communications | 2009年 / 1卷
关键词
Linear complexity; -error linear complexity; Algorithm; Linear recurring sequences; Stream cipher; 94A55; 94A60; 11B50;
D O I
暂无
中图分类号
学科分类号
摘要
Several fast algorithms for the determination of the linear complexity of d-periodic sequences over a finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb F}_q$\end{document}, i.e. sequences with characteristic polynomial f(x) = xd − 1, have been proposed in the literature. In this contribution fast algorithms for determining the linear complexity of binary sequences with characteristic polynomial f(x) = (x − 1)d for an arbitrary positive integer d, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x) = (x^2+x+1)^{2^v}$\end{document} are presented. The result is then utilized to establish a fast algorithm for determining the k-error linear complexity of binary sequences with characteristic polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x^2+x+1)^{2^v}$\end{document}.
引用
收藏
页码:117 / 133
页数:16
相关论文
共 26 条
  • [1] Chen H.(2005)Fast algorithms for determining the linear complexity of sequences over IEEE Trans. Inf. Theory 51 1854-1856
  • [2] Chen H.(2006)( IEEE Trans. Inf. Theory 52 5537-5539
  • [3] Fu F.W.(2005)) with period 2 J. Complex. 21 804-822
  • [4] Niederreiter H.(1983)Reducing the computation of linear complexities of periodic sequences over IEEE Trans. Inf. Theory 29 144-146
  • [5] Su M.(2003)( IEEE Trans. Inf. Theory 49 273-280
  • [6] Games R.A.(1973)) IEEE Trans. Inf. Theory 19 101-110
  • [7] Chan A.H.(2008)The expectation and variance of the joint linear complexity of random periodic multisequences Designs Codes Cryptogr. 46 57-65
  • [8] Lauder G.B.(2002)A fast algorithm for determining the complexity of a binary sequence with period 2 J. Complex. 18 87-103
  • [9] Paterson K.G.(2002)Computing the linear complexity spectrum of a binary sequence of period 2 IEEE Trans. Inf. Theory 48 2817-2825
  • [10] Massey J.L.(2003)Polynomial weights and code constructions J. Complex. 19 61-72