Radial acceleration of ions by a laser pulse in a plasma channel

被引:0
|
作者
V. F. Kovalev
V. Yu. Bychenkov
机构
[1] Russian Academy of Sciences,Keldysh Institute of Applied Mathematics
[2] Russian Academy of Sciences,Lebedev Physical Institute
[3] All-Russia Research Institute of Automatics,Center of Fundamental and Applied Research
[4] Rosatom,undefined
关键词
Laser Pulse; Laser Field; Plasma Channel; Invariant Solution; Approximate Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
The approximate analytic solution of the Cauchy problem is constructed for a system of kinetic equations of an electron–ion plasma that describe the acceleration of ions and the collisionless heating of electrons caused by the radial ponderomotive force of a laser beam that propagates in the transparent plasma of a gas or other low-density target. Under conditions where the Debye radius, rDe, of the electrons is considerably smaller than the characteristic localization scale, L, of the laser beam along the radius, ε = rDe/L ≪ 1, this solution is found by a group transformation that is specified by the operator of approximate renormalization-group symmetries over small parameters, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon {\kern 1pt} and{\kern 1pt} \mu {\kern 1pt} = {\kern 1pt} \sqrt {Zm/M} $$\end{document}, of the initial distribution functions of particles. For an axially symmetric geometry of the laser beam, the temporal and spatial dependences of the distribution functions of particles are obtained and their integral characteristics, such as the density, mean velocity, temperature, and energy spectrum, are found. The formation of a cylindrical density cusp and the localized heating of electrons at the laser-channel boundary are analytically described.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 50 条
  • [1] Radial acceleration of ions by a laser pulse in a plasma channel
    Kovalev, V. F.
    Bychenkov, V. Yu.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 121 (01) : 1 - 18
  • [2] Radial acceleration and cumulation of ions by an intense converging ring laser pulse
    Balakirev, V. A.
    Onishchenko, I. N.
    Povrozin, A. L.
    Tolstoluzhsky, A. P.
    Yegorov, A. M.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2008, (04): : 77 - 82
  • [3] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
    胡永南
    成丽红
    姚征伟
    张小波
    张爱霞
    薛具奎
    Chinese Physics B, 2020, 29 (08) : 299 - 307
  • [4] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel*
    Hu, Yong-Nan
    Cheng, Li-Hong
    Yao, Zheng-Wei
    Zhang, Xiao-Bo
    Zhang, Ai-Xia
    Xue, Ju-Kui
    CHINESE PHYSICS B, 2020, 29 (08)
  • [5] Positron acceleration by a laser pulse in a plasma
    Du, CG
    Xu, ZZ
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1582 - 1585
  • [6] Electron acceleration by a laser pulse in a plasma
    McKinstrie, CJ
    Startsev, EA
    PHYSICAL REVIEW E, 1996, 54 (02) : R1070 - R1073
  • [7] Improving proton acceleration with circularly polarized intense laser pulse by radial confinement with heavy ions
    Huang, L. G.
    Lei, A. L.
    Bin, J. H.
    Bai, Y.
    Yu, Wei
    Yu, M. Y.
    Cowan, T. E.
    PHYSICS OF PLASMAS, 2010, 17 (01)
  • [8] Laser Wakefield Acceleration in a Plasma Channel
    Dorozhkina, M. S.
    Baluev, K. V.
    Kutergin, D. D.
    Lotov, I. K.
    Minakov, V. A.
    Spitsyn, R. I.
    Tuev, P. V.
    Lotov, K. V.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2023, 50 (SUPPL 6) : S715 - S723
  • [9] Laser Wakefield Acceleration in a Plasma Channel
    M. S. Dorozhkina
    K. V. Baluev
    D. D. Kutergin
    I. K. Lotov
    V. A. Minakov
    R. I. Spitsyn
    P. V. Tuev
    K. V. Lotov
    Bulletin of the Lebedev Physics Institute, 2023, 50 : S715 - S723
  • [10] Effect of pulsed laser target cleaning on ionisation and acceleration of ions in a plasma produced by a femtosecond laser pulse
    Volkov, RV
    Vorobiev, AA
    Gordienko, VM
    Dzhidzhoev, MS
    Lachko, IM
    Mar'in, BV
    Savel'ev, AB
    Uryupina, DS
    QUANTUM ELECTRONICS, 2005, 35 (10) : 953 - 958