On the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-fractional continuum mechanics fields

被引:0
作者
K. A. Lazopoulos
A. K. Lazopoulos
机构
[1] Hellenic Army Academy,Mathematical Sciences Department
关键词
Fractional ; -derivative; Fractional ; -space; Fractional ; -strain; Non-local character; Fractional stresses; Global minima; Shock; Phase boundary;
D O I
10.1007/s00161-024-01282-8
中图分类号
学科分类号
摘要
After defining the fractional Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}-derivative, having all the prerequisites for corresponding to a differential, the fractional Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}-strain has already been established. Furthermore, only globally variational principles are allowed in the context of fractional analysis. Hence, balance laws, yielding the various field equations in Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-fractional continuum mechanics, are derived, allowing corners in their fields. The basic balance laws of mass, linear and rotational momentum, and energy conservation with jump conditions are derived in the context of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-fractional analysis.
引用
收藏
页码:561 / 570
页数:9
相关论文
共 35 条
[1]  
Leibniz GW(1849)Letter to G. A. L’Hospital Leibnit Math Schr 2 301-302
[2]  
Liouville J(1832)Sur le calcul des differentielles a indices quelconques J. Ec. Polytech. 13 71-162
[3]  
Baleanu D(2004)Lagrangian with linear velocities with Riemann-Liouville fractional derivatives Nuovo Cimento B119 73-79
[4]  
Avkar T(2002)Dynamics of a viscoelastic rod of fractional derivative type ZAMM 82 377-386
[5]  
Atanackovic TM(1969)Non-smooth geodesic flows and classical mechanics Can. Math. Bull. 12 209-212
[6]  
Stankovic B(2006)Non-local continuum mechanics and fractional calculus Mech. Res. Commun. 33 753-757
[7]  
Marsden JE(2019)On the mathematical formulation of fractional derivatives Prog. Fract. Differ. Appl. 5 261-267
[8]  
Lazopoulos KA(2023)Stability criteria and Fractal Fract. 7 248-361
[9]  
Lazopoulos KA(1968)-fractional mechanics Arch. Rat. Mech. Anal. 28 323-1146
[10]  
Lazopoulos AK(2021)Generalized Hamiltonian mechanics, a mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics Acta Mech. 232 1131-1374