An Effective Dissipation-Preserving Fourth-Order Difference Solver for Fractional-in-Space Nonlinear Wave Equations

被引:0
作者
Jianqiang Xie
Zhiyue Zhang
机构
[1] Nanjing Normal University,School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS
来源
Journal of Scientific Computing | 2019年 / 79卷
关键词
Dissipation-preserving scheme; Finite difference methods; Solvability; Convergence; Stability; 65M06; 35R11; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we devise an efficient dissipation-preserving fourth-order difference solver for the fractional-in-space nonlinear wave equations. First of all, we present a detailed derivation of the discrete energy dissipation property of the system. Then, with the help of the mathematical induction and Brouwer fixed point theorem, it is shown that the proposed scheme is uniquely solvable. Subsequently, by virtue of utilizing the discrete energy method, it is proven that the proposed solver achieves the convergence rates of O(Δt2+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\Delta t^2+h^{4})$$\end{document} in the discrete L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}- norm, and is unconditionally stable. And moreover, the exhibited convergence analysis is unconditional for the time step and space size, in comparison with the restrictive conditions required in the existing works. Finally, numerical results confirm the efficiency of the proposed scheme and exhibit the correctness of theoretical results.
引用
收藏
页码:1753 / 1776
页数:23
相关论文
共 99 条
  • [1] Deng D(2015)Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations Appl. Math. Model. 39 1033-1049
  • [2] Zhang C(2018)A new collection of real world applications of fractional calculus in science and engineering Commun. Nonlinear Sci. Numer. Simul. 64 213-231
  • [3] Sun H(2018)Boundary problems for the fractional and tempered fractional operators Multiscale Model. Simul. 16 125-149
  • [4] Zhang Y(2010)Numerical methods for fractional partial differential equations with Riesz space fractional derivatives Appl. Math. Model. 34 200-218
  • [5] Baleanu D(2004)Numerical study of a fractional sine-Gordon equation Prog. Fract. Differ. Appl. 4 153-162
  • [6] Chen W(2017)A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives J. Comput. Phys. 315 40-58
  • [7] Chen Y(2016)A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator Int. J. Comput. Math. 93 1103-1118
  • [8] Deng W(2018)Numerical methods for fractional partial differential equations Int. J. Comput. Math. 95 1048-1099
  • [9] Li B(2015)Fast finite volume methods for space-fractional diffusion equations Discrete Contin. Dyn. Syst. Ser. B 20 1427-1441
  • [10] Tian W(2015)A fast finite element method for space-fractional dispersion equations on bounded domains in R SIAM J. Sci. Comput. 37 1614-1635