The metabolic profiles of different fiber type populations under the emergence of the slow component of oxygen uptake

被引:0
作者
Sonia Conde Alonso
Trishan Gajanand
Joyce S. Ramos
Jean-Philippe Antonietti
Fabio Borrani
机构
[1] University of Lausanne,Institute of Sport Sciences
[2] The University of Queensland,School of Human Movement and Nutrition Sciences
[3] Flinders University,SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health Sciences
[4] University of Lausanne,Institute of Psychology
[5] University of Auckland,Department of Exercise Sciences, Faculty of Science
来源
The Journal of Physiological Sciences | 2020年 / 70卷
关键词
Oxygen consumption kinetics; Slow component; Muscle fatigue; Muscle fibers’ metabolic properties;
D O I
暂无
中图分类号
学科分类号
摘要
To investigate the influence of different metabolic muscle fiber profiles on the emergence of the slow component of oxygen uptake (V˙O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{2}$$\end{document}SC), 12 habitually active males completed four sessions of different combinations of work-to-work transition exercises up to severe intensity. Each transition was modeled to analyze the different kinetic parameters. Using a new approach, combining Henneman’s principle and superposition principle, a reconstructed kinetics was built by temporally aligning the start of each new transition and summing them. The primary phase time constant significantly slowed and the gain at the end (GainEnd) significantly increased when transitions started from a higher intensity (p < 0.001). Kinetic parameters from the reconstructed curve (V˙O2baseline\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{2} {\text{baseline}}$$\end{document}, time delay of primary phase, V˙O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{2}$$\end{document}End and GainEnd) were not significantly different from one transition to severe exercise. These results suggest that the appearance of the V˙O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}\text{O}}_{2}$$\end{document}SC is at least related to, if not the result of, the different metabolic properties of muscle fibers.
引用
收藏
相关论文
共 141 条
  • [1] Grassi B(1996)Muscle O J Appl Physiol 80 988-998
  • [2] Poole DC(1974) uptake kinetics in humans: implications for metabolic control Acta Physiol Scand Suppl 415 1-68
  • [3] Richardson RS(1987)Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise J Appl Physiol 63 2253-2261
  • [4] Knight DR(1972)Simulation of pulmonary O J Appl Physiol 33 351-356
  • [5] Erickson BK(1991) uptake during exercise transients in humans J Appl Physiol 71 1245-1260
  • [6] Wagner PD(1992)Oxygen uptake kinetics for various intensities of constant-load work Am J Physiol Cell Physiol 263 C598-C606
  • [7] Linnarsson D(1996)Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans J Physiol 493 299-307
  • [8] Barstow TJ(1994)Regulation of oxygen consumption in fast- and slow-twitch muscle Med Sci Sports Exerc 26 1347-1353
  • [9] Mole PA(1987)Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence J Physiol 385 661-675
  • [10] Whipp BJ(1964)Mitochondrial function during heavy exercise Am J Physiol Legacy Content 206 1015-1020