Gradient Recovery for the Crouzeix–Raviart Element

被引:0
作者
Hailong Guo
Zhimin Zhang
机构
[1] Wayne State University,Department of Mathematics
[2] Beijing Computational Science Research Center,undefined
来源
Journal of Scientific Computing | 2015年 / 64卷
关键词
Nonconforming; The Crouzeix–Raviart element; Gradient recovery; Superconvergence; Polynomial preserving; 65N50; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
A gradient recovery method for the Crouzeix–Raviart element is proposed and analyzed. The proposed method is based on local discrete least square fittings. It is proven to preserve quadratic polynomials and be a bounded linear operator. Numerical examples indicate that it can produce a superconvergent gradient approximation for both elliptic equations and Stokes equations. In addition, it provides an asymptotically exact posteriori error estimators for the Crouzeix–Raviart element.
引用
收藏
页码:456 / 476
页数:20
相关论文
共 30 条
[1]  
Ainsworth M(2005)Robust a posteriori error estimation for nonconforming finite element approximation SIAM J. Numer. Anal. 42 2320-2341
[2]  
Bank R(2003)Asymptotically exact a posteriori error estimators. I. Grids with superconvergence SIAM J. Numer. Anal. 41 62294-2312
[3]  
Xu J(1977)Higher order local accuracy by averaging in the finite element method Math. Comp. 31 94-111
[4]  
Bramble JH(1992)Linear finite element methods for planar linear elasticity Math. Comput. 59 321-338
[5]  
Schatz AH(2010)Recovery-based error estimators for interface problems: mixed and nonconforming finite elements SIAM J. Numer. Anal. 48 30-52
[6]  
Brenner SC(2002)Each averaging techique yields reliable a posteriori error control in FEM on unstructure grids. I: Low order conforming, nonconforming and mixed FEM Math. Comput. 71 945-969
[7]  
Sung L-Y(1973)Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. RAIRO Anal. Numer. 3 33-75
[8]  
Cai Z(1996)A convergent adaptive algorithm for Poisson’s equation SIAM J. Numer. Anal. 33 1106-1124
[9]  
Zhang S(2013)Four closely related equilibrated flux reconstructions for nonconforming finite elements C. R. Math. Acad. Sci. Paris 351 77-80
[10]  
Carstensen C(1991)Nonconforming finite element methods for the equations of linear elasticity Math. Comput. 57 529-550