Chemical Transfer Energies of Some Homologous Amino Acids and the –CH2– Group in Aqueous DMF: Solvent Effect on Hydrophobic Hydration and Three Dimensional Solvent Structure

被引:0
作者
Amitava Bhattacharyya
Swapan Kumar Bhattacharya
机构
[1] Jadavpur University,Physical Chemistry Section, Department of Chemistry
来源
Journal of Solution Chemistry | 2013年 / 42卷
关键词
Chemical transfer energy; Hydrophobic hydration; Dipole–dipole interaction of amino acid; Dispersion of the –CH; – group; Hydrophobicity of the –CH; – group;
D O I
暂无
中图分类号
学科分类号
摘要
Standard transfer Gibbs energies, ΔtrG∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr}} G^{^\circ } $$\end{document}, of a series of homologues α-amino acids have been evaluated by determining the solubility of glycine, alanine, amino butyric acid and norvaline gravimetrically at 298.15 K. Standard entropies of transfer, ΔtrS∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr}} S^{^\circ } $$\end{document}, of the amino acids have also been evaluated by extending the solubility measurement to five equidistant temperatures ranging from 288.15 to 308.15 K. The chemical contributions Δtr,chG∘(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr,ch}} G^{^\circ } (i) $$\end{document} of α-amino acids, as obtained by subtracting theoretically computed contributions to ΔtrG∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr}} G^{ \circ } $$\end{document} due to cavity and dipole–dipole interaction effects from the corresponding experimental ΔtrG∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr}} G^{ \circ } $$\end{document}, are indicative of the superimposed effect of increased basicity and dispersion and decreased hydrophobic hydration (hbh) in DMF–water solvent mixtures as compared to those in water, while, in addition, TΔtr,chS∘(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\Updelta_{\text{tr,ch}} S^{^\circ } (i) $$\end{document} is guided by structural effects. The computed chemical transfer energies of the –CH2– group, Δtr,chP∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr,ch}} P^{^\circ } $$\end{document}(–CH2–) [P = G or S] as obtained by subtracting the value of lower homologue from that of immediately higher homologue, are found to change with composition indicating involvement of several opposing factors in the calculation of the chemical interactions. The Δtr,chG∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Updelta_{\text{tr,ch}} G^{^\circ } $$\end{document}(–CH2–) values are found to be guided by the decreased hydrophobic effect in DMF–water mixtures, and are indicative of the nature of the three dimensional structure of the aquo-organic solvent system around each solute.
引用
收藏
页码:2149 / 2167
页数:18
相关论文
共 77 条
[1]  
Scott JH(2006)An examination of the carbon isotope effects associated with amino acid biosynthesis Astrobiology 6 867-880
[2]  
O’brien DM(2005)Chemical transfer energetics of the –CH J. Mol. Liq. 122 95-103
[3]  
Emerson D(1988)– group in aqueous glycerol: solvent effect on hydrophobic hydration and its three-dimensional structure Can. J. Chem. 66 461-468
[4]  
Sun H(2005)Thermodynamics of transfer of glycine, diglycine and triglycine from water to aqueous solutions of urea, glycerol and sodium nitrate Braz. J. Med. Res. 38 1167-1173
[5]  
McDonald GD(2005)Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies Pure Appl. Chem. 77 559-568
[6]  
Salgado A(2004)Solubilities of amino acids, sugars and proteins Chem. Phys. 307 111-119
[7]  
Fogel ML(2010)Water mediated interaction of a protein interface Nature 468 851-854
[8]  
Sinha R(2000)Protein–protein interactions: interactome under construction Anal. Biochem. 277 243-246
[9]  
Bhattacharya SK(2004)Studies on the protonation constants and solvation of α-amino acids in dioxan–water mixtures J. Chin. Chem. Soc. 51 1-6
[10]  
Kundu KK(2001)Thermodynamic studies on amino acid solvation in some aqueous alcohols Phys. Chem. Liq. 39 77-84