Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating

被引:0
作者
R. Andrew Sims
Pankaj Kadwani
Heike Ebendorff-Heideprem
Lawrence Shah
Tanya M. Monro
Martin Richardson
机构
[1] University of Central Florida,Townes Laser Institute, CREOL, The College of Optics and Photonics
[2] University of Adelaide,Centre of Expertise in Photonics, Institute for Photonics and Advanced Sensing
来源
Applied Physics B | 2013年 / 111卷
关键词
Soliton; TeO2; Chirp Pulse Amplification; Dispersion Compensate Fiber; Hyperbolic Secant Pulse;
D O I
暂无
中图分类号
学科分类号
摘要
We report femtosecond pulse generation and chirped pulse amplification in Tm:fiber. A mode-locked oscillator operating in the soliton regime produced 800 fs pulses with 5 nm spectral bandwidth, at 40 pJ pulse energy. This oscillator seeded a pre-amplifier that utilizes a Raman soliton self-frequency shift to produce wavelength tunable pulses with 3 nJ energy, reduced pulse duration of 150 fs, and increased bandwidth of 30 nm. For further amplification, the pulses were stretched up to 160 ps using a chirped Bragg grating (CBG). Stretched pulses were amplified to 85 nJ after compression in single-mode Tm:fiber and recompressed with the CBG as short as 400 fs. Compressed pulses were coupled into a highly nonlinear tellurite fiber to investigate the potential of this ultrashort pulse 2-μm fiber source as a pump for mid-IR supercontinuum generation.
引用
收藏
页码:299 / 304
页数:5
相关论文
共 86 条
  • [1] Leindecker N(2012)Appl Opt. Exp. 20 7046-7053
  • [2] Marandi A(2010)Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser Phys. Lett. 97 061106-883
  • [3] Byer RL(1995)undefined Appl. Phys. Lett. 67 19-1338
  • [4] Vodopyanov KL(1996)undefined Opt. Lett. 21 881-692
  • [5] Hartl I(2008)undefined Opt. Lett. 33 1336-936
  • [6] Fermann M(2008)undefined Opt. Lett. 33 690-7431
  • [7] Schunemann PG(2011)undefined ASSP 4 ATuD4-2993
  • [8] Buccoliero D(2007)undefined IEEE Phot. Tech. Lett. 19 934-5688
  • [9] Steffensen H(2005)undefined Opt. Exp. 13 7424-2930
  • [10] Bang O(2010)undefined Opt. Let. 35 2991-4882