Shifted convolution L-series values for elliptic curves

被引:0
作者
Asra Ali
Nitya Mani
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] Stanford University,Department of Mathematics
来源
Archiv der Mathematik | 2018年 / 110卷
关键词
Elliptic curve; Modular form; L-series values; Holomorphic projection; Eisenstein series; Modularity theorem; Complex multiplication.;
D O I
暂无
中图分类号
学科分类号
摘要
Using explicit constructions of the Weierstrass mock modular form and Eisenstein series coefficients, we obtain closed formulas for the generating functions of values of shifted convolution L-functions associated to certain elliptic curves. These identities provide a surprising relation between weight 2 newforms and shifted convolution L-values when the underlying elliptic curve has modular degree 1 with conductor N such that genus(X0(N))=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {genus}(X_0(N)) = 1$$\end{document}.
引用
收藏
页码:225 / 244
页数:19
相关论文
共 26 条
  • [1] Beckwith O(2017)Asymptotic bounds for special values of shifted convolution dirichlet series Proc. Amer. Math. Soc. 145 2373-2381
  • [2] Breuil C(2001)On the modularity of elliptic curves over J. Amer. Math. Soc. 14 843-939
  • [3] Conrad B(2016): wild Proc. Amer. Math. Soc. 144 1439-1451
  • [4] Diamond F(2004)-adic exercises Duke Math. J. 125 45-90
  • [5] Taylor R(2008)-adic properties of modular shifted convolution Dirichlet series Math. Ann. 342 673-693
  • [6] Bringmann K(2010)On two geometric theta lifts Proc. Amer. Math. Soc. 138 3393-3403
  • [7] Mertens MH(1957)Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues Math. Z. 67 267-298
  • [8] Ono K(1986)Poincaré series and the divisors of modular forms Invent. math. 84 225-320
  • [9] Bruinier JH(2016)Eine Verallgemeinerung der Abelschen Integrale J. Number Theory 161 457-533
  • [10] Funke J(2015)Heegner points and derivatives of Ramanujan J. 36 149-164