Higgs and Coulomb branches from vertex operator algebras

被引:0
作者
Kevin Costello
Thomas Creutzig
Davide Gaiotto
机构
[1] Perimeter Institute for Theoretical Physics,Department of Mathematics
[2] University of Alberta,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Conformal Field Theory; Supersymmetric Gauge Theory; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate a conjectural relation between the category of line defects in topologically twisted 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric quantum field theories and categories of modules for Vertex Operator Algebras of boundary local operators for the theories. We test the conjecture in several examples and provide some partial proofs for standard classes of gauge theories.
引用
收藏
相关论文
共 50 条
[41]   Nilpotent orbit Coulomb branches of types AD [J].
Amihay Hanany ;
Dominik Miketa .
Journal of High Energy Physics, 2019
[42]   The singularity structure of scale-invariant rank-2 Coulomb branches [J].
Argyres, Philip C. ;
Long, Cody ;
Martone, Mario .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05)
[43]   Modularity of logarithmic parafermion vertex algebras [J].
Auger, Jean ;
Creutzig, Thomas ;
Ridout, David .
LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (12) :2543-2587
[44]   Vertex algebras according to Isaac Newton [J].
Tuite, Michael .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (41)
[45]   Modularity of logarithmic parafermion vertex algebras [J].
Jean Auger ;
Thomas Creutzig ;
David Ridout .
Letters in Mathematical Physics, 2018, 108 :2543-2587
[46]   The singularity structure of scale-invariant rank-2 Coulomb branches [J].
Philip C. Argyres ;
Cody Long ;
Mario Martone .
Journal of High Energy Physics, 2018
[47]   On classification of conformal vectors in vertex operator algebra and the vertex algebra automorphism group [J].
Moriwaki, Yuto .
JOURNAL OF ALGEBRA, 2020, 546 :689-702
[48]   The notion of vertex operator coalgebra and a geometric interpretation [J].
Hubbard, K .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (05) :1541-1589
[49]   Energy bounds for vertex operator algebra extensions [J].
Sebastiano Carpi ;
Luca Tomassini .
Letters in Mathematical Physics, 113
[50]   Energy bounds for vertex operator algebra extensions [J].
Carpi, Sebastiano ;
Tomassini, Luca .
LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (03)