A semantic study of the first-order predicate logic with uncertainty involved

被引:0
作者
Xingfang Zhang
Xiang Li
机构
[1] Liaocheng University,School of Mathematical Sciences
[2] Beijing University of Chemical Technology,School of Economics and Management
来源
Fuzzy Optimization and Decision Making | 2014年 / 13卷
关键词
Uncertain first-order predicate logic; Uncertain predicate formula; Degree of truth; Uncertain measure; Uncertain variable;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide a semantic study of the first-order predicate logic for situations involving uncertainty. We introduce the concepts of uncertain predicate proposition, uncertain predicate formula, uncertain interpretation and degree of truth in the framework of uncertainty theory. Compared with classical predicate formula taking true value in {0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}$$\end{document}, the degree of truth of uncertain predicate formula may take any value in the unit interval [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]$$\end{document}. We also show that the uncertain first-order predicate logic is consistent with the classical first-order predicate logic on some laws of the degree of truth.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 25 条
  • [1] Campos C(2009)Assembling a consistent set of sentences in relational probabilistic logic with stochastic independence Journal of Applied Logic 7 137-154
  • [2] Cozman F(2011)A note on truth value in uncertain logic Expert Systems with Applications 38 15582-15586
  • [3] Luna J(2000)Basic fuzzy logic is the logic of continuous t-norms and their residua Soft Computing 4 106-112
  • [4] Chen X(1987)Necessity measure and resolution principle IEEE Transactions on Man Cybenet 17 474-478
  • [5] Ralescu DA(2001)Monoidal t-norm based logic: towards logic for left-continuous t-norms Fuzzy Sets and Systems 124 271-288
  • [6] Cignoli R(1932)Zum intuitionistischen Aussagenkalköl Anz. Akad. Wiss. Wien 69 65-66
  • [7] Esteva F(2009)Foundation of credibilistic logic Fuzzy Optimization and Decision Making 8 91-102
  • [8] Godo L(2009)Hybrid logic and uncertain logic Journal of Uncertain Systems 3 83-94
  • [9] Torreas A(2009)Some research problems in uncertainty theory Journal of Uncertain Systems 3 3-10
  • [10] Dubois D(2009)Uncertain entailment and modus ponens in the framework of uncertain logic Journal of Uncertain System 3 243-251